In this work, we consider the algorithm to the (nonlinear) regression problems with $\ell_0$ penalty. The existing algorithms for $\ell_0$ based optimization problem are often carried out with a fixed step size, and the selection of an appropriate step size depends on the restricted strong convexity and smoothness for the loss function, hence it is difficult to compute in practical calculation. In sprite of the ideas of support detection and root finding \cite{HJK2020}, we proposes a novel and efficient data-driven line search rule to adaptively determine the appropriate step size. We prove the $\ell_2$ error bound to the proposed algorithm without much restrictions for the cost functional. A large number of numerical comparisons with state-of-the-art algorithms in linear and logistic regression problems show the stability, effectiveness and superiority of the proposed algorithms.
We develop a novel procedure for estimating the optimizer of general convex stochastic optimization problems of the form $\min_{x\in\mathcal{X}} \mathbb{E}[F(x,\xi)]$, when the given data is a finite independent sample selected according to $\xi$. The procedure is based on a median-of-means tournament, and is the first procedure that exhibits the optimal statistical performance in heavy tailed situations: we recover the asymptotic rates dictated by the central limit theorem in a non-asymptotic manner once the sample size exceeds some explicitly computable threshold. Additionally, our results apply in the high-dimensional setup, as the threshold sample size exhibits the optimal dependence on the dimension (up to a logarithmic factor). The general setting allows us to recover recent results on multivariate mean estimation and linear regression in heavy-tailed situations and to prove the first sharp, non-asymptotic results for the portfolio optimization problem.
We introduce a similarity function on formulae of signal temporal logic (STL). It comes in the form of a kernel function, well known in machine learning as a conceptually and computationally efficient tool. The corresponding kernel trick allows us to circumvent the complicated process of feature extraction, i.e. the (typically manual) effort to identify the decisive properties of formulae so that learning can be applied. We demonstrate this consequence and its advantages on the task of predicting (quantitative) satisfaction of STL formulae on stochastic processes: Using our kernel and the kernel trick, we learn (i) computationally efficiently (ii) a practically precise predictor of satisfaction, (iii) avoiding the difficult task of finding a way to explicitly turn formulae into vectors of numbers in a sensible way. We back the high precision we have achieved in the experiments by a theoretically sound PAC guarantee, ensuring our procedure efficiently delivers a close-to-optimal predictor.
We introduce Stochastic Asymptotical Regularization (SAR) methods for the uncertainty quantification of the stable approximate solution of ill-posed linear-operator equations, which are deterministic models for numerous inverse problems in science and engineering. We prove the regularizing properties of SAR with regard to mean-square convergence. We also show that SAR is an optimal-order regularization method for linear ill-posed problems provided that the terminating time of SAR is chosen according to the smoothness of the solution. This result is proven for both a priori and a posteriori stopping rules under general range-type source conditions. Furthermore, some converse results of SAR are verified. Two iterative schemes are developed for the numerical realization of SAR, and the convergence analyses of these two numerical schemes are also provided. A toy example and a real-world problem of biosensor tomography are studied to show the accuracy and the advantages of SAR: compared with the conventional deterministic regularization approaches for deterministic inverse problems, SAR can provide the uncertainty quantification of the quantity of interest, which can in turn be used to reveal and explicate the hidden information about real-world problems, usually obscured by the incomplete mathematical modeling and the ascendence of complex-structured noise.
We present and investigate a new type of implicit fractional linear multistep method of order two for fractional initial value problems. The method is obtained from the second order super convergence of the Gr\"unwald-Letnikov approximation of the fractional derivative at a non-integer shift point. The proposed method is of order two consistency and coincides with the backward difference method of order two for classical initial value problems when the order of the derivative is one. The weight coefficients of the proposed method are obtained from the Gr\"unwald weights and hence computationally efficient compared with that of the fractional backward difference formula of order two. The stability properties are analyzed and shown that the stability region of the method is larger than that of the fractional Adams-Moulton method of order two and the fractional trapezoidal method. Numerical result and illustrations are presented to justify the analytical theories.
We consider parameter estimation for a linear parabolic second-order stochastic partial differential equation (SPDE) in two space dimensions driven by two types $Q$-Wiener processes based on high frequency data in time and space. We first estimate the parameters which appear in the coordinate process of the SPDE using the minimum contrast estimator based on the thinned data with respect to space, and then construct an approximate coordinate process of the SPDE. Furthermore, we propose estimators of the coefficient parameters of the SPDE utilizing the approximate coordinate process based on the thinned data with respect to time. We also give some simulation results.
We study sparse linear regression over a network of agents, modeled as an undirected graph and no server node. The estimation of the $s$-sparse parameter is formulated as a constrained LASSO problem wherein each agent owns a subset of the $N$ total observations. We analyze the convergence rate and statistical guarantees of a distributed projected gradient tracking-based algorithm under high-dimensional scaling, allowing the ambient dimension $d$ to grow with (and possibly exceed) the sample size $N$. Our theory shows that, under standard notions of restricted strong convexity and smoothness of the loss functions, suitable conditions on the network connectivity and algorithm tuning, the distributed algorithm converges globally at a {\it linear} rate to an estimate that is within the centralized {\it statistical precision} of the model, $O(s\log d/N)$. When $s\log d/N=o(1)$, a condition necessary for statistical consistency, an $\varepsilon$-optimal solution is attained after $\mathcal{O}(\kappa \log (1/\varepsilon))$ gradient computations and $O (\kappa/(1-\rho) \log (1/\varepsilon))$ communication rounds, where $\kappa$ is the restricted condition number of the loss function and $\rho$ measures the network connectivity. The computation cost matches that of the centralized projected gradient algorithm despite having data distributed; whereas the communication rounds reduce as the network connectivity improves. Overall, our study reveals interesting connections between statistical efficiency, network connectivity \& topology, and convergence rate in high dimensions.
Given a random sample of size $n$ from a $p$ dimensional random vector, where both $n$ and $p$ are large, we are interested in testing whether the $p$ components of the random vector are mutually independent. This is the so-called complete independence test. In the multivariate normal case, it is equivalent to testing whether the correlation matrix is an identity matrix. In this paper, we propose a one-sided empirical likelihood method for the complete independence test for multivariate normal data based on squared sample correlation coefficients. The limiting distribution for our one-sided empirical likelihood test statistic is proved to be $Z^2I(Z>0)$ when both $n$ and $p$ tend to infinity, where $Z$ is a standard normal random variable. In order to improve the power of the empirical likelihood test statistic, we also introduce a rescaled empirical likelihood test statistic. We carry out an extensive simulation study to compare the performance of the rescaled empirical likelihood method and two other statistics which are related to the sum of squared sample correlation coefficients.
In the standard Gaussian linear measurement model $Y=X\mu_0+\xi \in \mathbb{R}^m$ with a fixed noise level $\sigma>0$, we consider the problem of estimating the unknown signal $\mu_0$ under a convex constraint $\mu_0 \in K$, where $K$ is a closed convex set in $\mathbb{R}^n$. We show that the risk of the natural convex constrained least squares estimator (LSE) $\hat{\mu}(\sigma)$ can be characterized exactly in high dimensional limits, by that of the convex constrained LSE $\hat{\mu}_K^{\mathsf{seq}}$ in the corresponding Gaussian sequence model at a different noise level. The characterization holds (uniformly) for risks in the maximal regime that ranges from constant order all the way down to essentially the parametric rate, as long as certain necessary non-degeneracy condition is satisfied for $\hat{\mu}(\sigma)$. The precise risk characterization reveals a fundamental difference between noiseless (or low noise limit) and noisy linear inverse problems in terms of the sample complexity for signal recovery. A concrete example is given by the isotonic regression problem: While exact recovery of a general monotone signal requires $m\gg n^{1/3}$ samples in the noiseless setting, consistent signal recovery in the noisy setting requires as few as $m\gg \log n$ samples. Such a discrepancy occurs when the low and high noise risk behavior of $\hat{\mu}_K^{\mathsf{seq}}$ differ significantly. In statistical languages, this occurs when $\hat{\mu}_K^{\mathsf{seq}}$ estimates $0$ at a faster `adaptation rate' than the slower `worst-case rate' for general signals. Several other examples, including non-negative least squares and generalized Lasso (in constrained forms), are also worked out to demonstrate the concrete applicability of the theory in problems of different types.
Statistical inference on the explained variation of an outcome by a set of covariates is of particular interest in practice. When the covariates are of moderate to high-dimension and the effects are not sparse, several approaches have been proposed for estimation and inference. One major problem with the existing approaches is that the inference procedures are not robust to the normality assumption on the covariates and the residual errors. In this paper, we propose an estimating equation approach to the estimation and inference on the explained variation in the high-dimensional linear model. Unlike the existing approaches, the proposed approach does not rely on the restrictive normality assumptions for inference. It is shown that the proposed estimator is consistent and asymptotically normally distributed under reasonable conditions. Simulation studies demonstrate better performance of the proposed inference procedure in comparison with the existing approaches. The proposed approach is applied to studying the variation of glycohemoglobin explained by environmental pollutants in a National Health and Nutrition Examination Survey data set.
We consider the task of learning the parameters of a {\em single} component of a mixture model, for the case when we are given {\em side information} about that component, we call this the "search problem" in mixture models. We would like to solve this with computational and sample complexity lower than solving the overall original problem, where one learns parameters of all components. Our main contributions are the development of a simple but general model for the notion of side information, and a corresponding simple matrix-based algorithm for solving the search problem in this general setting. We then specialize this model and algorithm to four common scenarios: Gaussian mixture models, LDA topic models, subspace clustering, and mixed linear regression. For each one of these we show that if (and only if) the side information is informative, we obtain parameter estimates with greater accuracy, and also improved computation complexity than existing moment based mixture model algorithms (e.g. tensor methods). We also illustrate several natural ways one can obtain such side information, for specific problem instances. Our experiments on real data sets (NY Times, Yelp, BSDS500) further demonstrate the practicality of our algorithms showing significant improvement in runtime and accuracy.