We consider non-ergodic class of stationary real harmonizable symmetric $\alpha$-stable processes $X=\left\{X(t):t\in\mathbb{R}\right\}$ with a finite symmetric and absolutely continuous control measure. We refer to its density function as the spectral density of $X$. These processes admit a LePage series representation and are conditionally Gaussian, which allows us to derive the non-ergodic limit of sample functions on $X$. In particular, we give an explicit expression for the non-ergodic limits of the empirical characteristic function of $X$ and the lag process $\left\{X(t+h)-X(t):t\in\mathbb{R}\right\}$ with $h>0$, respectively. The process admits an equivalent representation as a series of sinusoidal waves with random frequencies which are i.i.d. with the (normalized) spectral density of $X$ as their probability density function. Based on strongly consistent frequency estimation using the periodogram we present a strongly consistent estimator of the spectral density. The periodogram's computation is fast and efficient, and our method is not affected by the non-ergodicity of $X$.
In this paper we develop a classical algorithm of complexity $O(K \, 2^n)$ to simulate parametrized quantum circuits (PQCs) of $n$ qubits, where $K$ is the total number of one-qubit and two-qubit control gates. The algorithm is developed by finding $2$-sparse unitary matrices of order $2^n$ explicitly corresponding to any single-qubit and two-qubit control gates in an $n$-qubit system. Finally, we determine analytical expression of Hamiltonians for any such gate and consequently a local Hamiltonian decomposition of any PQC is obtained. All results are validated with numerical simulations.
We present a complete numerical analysis for a general discretization of a coupled flow-mechanics model in fractured porous media, considering single-phase flows and including frictionless contact at matrix-fracture interfaces, as well as nonlinear poromechanical coupling. Fractures are described as planar surfaces, yielding the so-called mixed- or hybrid-dimensional models. Small displacements and a linear elastic behavior are considered for the matrix. The model accounts for discontinuous fluid pressures at matrix-fracture interfaces in order to cover a wide range of normal fracture conductivities. The numerical analysis is carried out in the Gradient Discretization framework, encompassing a large family of conforming and nonconforming discretizations. The convergence result also yields, as a by-product, the existence of a weak solution to the continuous model. A numerical experiment in 2D is presented to support the obtained result, employing a Hybrid Finite Volume scheme for the flow and second-order finite elements ($\mathbb P_2$) for the mechanical displacement coupled with face-wise constant ($\mathbb P_0$) Lagrange multipliers on fractures, representing normal stresses, to discretize the contact conditions.
In this paper we study the Cayley graph $\mathrm{Cay}(S_n,T)$ of the symmetric group $S_n$ generated by a set of transpositions $T$. We show that for $n\geq 5$ the Cayley graph is normal. As a corollary, we show that its automorphism group is a direct product of $S_n$ and the automorphism group of the transposition graph associated to $T$. This provides an affirmative answer to a conjecture raised by Ganesan in arXiv:1703.08109, showing that $\mathrm{Cay}(S_n,T)$ is normal if and only if the transposition graph is not $C_4$ or $K_n$.
A novel H3N3-2$_\sigma$ interpolation approximation for the Caputo fractional derivative of order $\alpha\in(1,2)$ is derived in this paper, which improves the popular L2C formula with (3-$\alpha$)-order accuracy. By an interpolation technique, the second-order accuracy of the truncation error is skillfully estimated. Based on this formula, a finite difference scheme with second-order accuracy both in time and in space is constructed for the initial-boundary value problem of the time fractional hyperbolic equation. It is well known that the coefficients' properties of discrete fractional derivatives are fundamental to the numerical stability of time fractional differential models. We prove the related properties of the coefficients of the H3N3-2$_\sigma$ approximate formula. With these properties, the numerical stability and convergence of the difference scheme are derived immediately by the energy method in the sense of $H^1$-norm. Considering the weak regularity of the solution to the problem at the starting time, a finite difference scheme on the graded meshes based on H3N3-2$_\sigma$ formula is also presented. The numerical simulations are performed to show the effectiveness of the derived finite difference schemes, in which the fast algorithms are employed to speed up the numerical computation.
We consider the problem of approximating a function from $L^2$ by an element of a given $m$-dimensional space $V_m$, associated with some feature map $\varphi$, using evaluations of the function at random points $x_1,\dots,x_n$. After recalling some results on optimal weighted least-squares using independent and identically distributed points, we consider weighted least-squares using projection determinantal point processes (DPP) or volume sampling. These distributions introduce dependence between the points that promotes diversity in the selected features $\varphi(x_i)$. We first provide a generalized version of volume-rescaled sampling yielding quasi-optimality results in expectation with a number of samples $n = O(m\log(m))$, that means that the expected $L^2$ error is bounded by a constant times the best approximation error in $L^2$. Also, further assuming that the function is in some normed vector space $H$ continuously embedded in $L^2$, we further prove that the approximation is almost surely bounded by the best approximation error measured in the $H$-norm. This includes the cases of functions from $L^\infty$ or reproducing kernel Hilbert spaces. Finally, we present an alternative strategy consisting in using independent repetitions of projection DPP (or volume sampling), yielding similar error bounds as with i.i.d. or volume sampling, but in practice with a much lower number of samples. Numerical experiments illustrate the performance of the different strategies.
We establish several properties of (weighted) generalized $\psi$-estimators introduced by Barczy and P\'ales in 2022: mean-type, monotonicity and sensitivity properties, bisymmetry-type inequality and some asymptotic and continuity properties as well. We also illustrate these properties by providing several examples including statistical ones as well.
We consider the success probability of the $L_0$-regularized box-constrained Babai point, which is a suboptimal solution to the $L_0$-regularized box-constrained integer least squares problem and can be used for MIMO detection. First, we derive formulas for the success probability of both $L_0$-regularized and unregularized box-constrained Babai points. Then we investigate the properties of the $L_0$-regularized box-constrained Babai point, including the optimality of the regularization parameter, the monotonicity of its success probability, and the monotonicity of the ratio of the two success probabilities. A bound on the success probability of the $L_0$-regularized Babai point is derived. After that, we analyze the effect of the LLL-P permutation strategy on the success probability of the $L_0$-regularized Babai point. Then we propose some success probability based column permutation strategies to increase the success probability of the $L_0$-regularized box-constrained Babai point. Finally, we present numerical tests to confirm our theoretical results and to show the advantage of the $L_0$ regularization and the effectiveness of the proposed column permutation algorithms compared to existing strategies.
Let $(X_t)$ be a reflected diffusion process in a bounded convex domain in $\mathbb R^d$, solving the stochastic differential equation $$dX_t = \nabla f(X_t) dt + \sqrt{2f (X_t)} dW_t, ~t \ge 0,$$ with $W_t$ a $d$-dimensional Brownian motion. The data $X_0, X_D, \dots, X_{ND}$ consist of discrete measurements and the time interval $D$ between consecutive observations is fixed so that one cannot `zoom' into the observed path of the process. The goal is to infer the diffusivity $f$ and the associated transition operator $P_{t,f}$. We prove injectivity theorems and stability inequalities for the maps $f \mapsto P_{t,f} \mapsto P_{D,f}, t<D$. Using these estimates we establish the statistical consistency of a class of Bayesian algorithms based on Gaussian process priors for the infinite-dimensional parameter $f$, and show optimality of some of the convergence rates obtained. We discuss an underlying relationship between the degree of ill-posedness of this inverse problem and the `hot spots' conjecture from spectral geometry.
A new sparse semiparametric model is proposed, which incorporates the influence of two functional random variables in a scalar response in a flexible and interpretable manner. One of the functional covariates is included through a single-index structure, while the other is included linearly through the high-dimensional vector formed by its discretised observations. For this model, two new algorithms are presented for selecting relevant variables in the linear part and estimating the model. Both procedures utilise the functional origin of linear covariates. Finite sample experiments demonstrated the scope of application of both algorithms: the first method is a fast algorithm that provides a solution (without loss in predictive ability) for the significant computational time required by standard variable selection methods for estimating this model, and the second algorithm completes the set of relevant linear covariates provided by the first, thus improving its predictive efficiency. Some asymptotic results theoretically support both procedures. A real data application demonstrated the applicability of the presented methodology from a predictive perspective in terms of the interpretability of outputs and low computational cost.
In this paper, we combine the stabilizer free weak Galerkin (SFWG) method and the implicit $\theta$-schemes in time for $\theta\in [\frac{1}{2},1]$ to solve the fourth-order parabolic problem. In particular, when $\theta =1$, the full-discrete scheme is first-order backward Euler and the scheme is second-order Crank Nicolson scheme if $\theta =\frac{1}{2}$. Next, we analyze the well-posedness of the schemes and deduce the optimal convergence orders of the error in the $H^2$ and $L^2$ norms. Finally, numerical examples confirm the theoretical results.