We study first-order logic (FO) over the structure consisting of finite words over some alphabet $A$, together with the (non-contiguous) subword ordering. In terms of decidability of quantifier alternation fragments, this logic is well-understood: If every word is available as a constant, then even the $\Sigma_1$ (i.e., existential) fragment is undecidable, already for binary alphabets $A$. However, up to now, little is known about the expressiveness of the quantifier alternation fragments: For example, the undecidability proof for the existential fragment relies on Diophantine equations and only shows that recursively enumerable languages over a singleton alphabet (and some auxiliary predicates) are definable. We show that if $|A|\ge 3$, then a relation is definable in the existential fragment over $A$ with constants if and only if it is recursively enumerable. This implies characterizations for all fragments $\Sigma_i$: If $|A|\ge 3$, then a relation is definable in $\Sigma_i$ if and only if it belongs to the $i$-th level of the arithmetical hierarchy. In addition, our result yields an analogous complete description of the $\Sigma_i$-fragments for $i\ge 2$ of the pure logic, where the words of $A^*$ are not available as constants.
We study the $L^1$-approximation of the log-Heston SDE at the terminal time point by arbitrary methods that use an equidistant discretization of the driving Brownian motion. We show that such methods can achieve at most order $ \min \{ \nu, \tfrac{1}{2} \}$, where $\nu$ is the Feller index of the underlying CIR process. As a consequence Euler-type schemes are optimal for $\nu \geq 1$, since they have convergence order $\tfrac{1}{2}-\epsilon$ for $\epsilon >0$ arbitrarily small in this regime.
Consider two forecasters, each making a single prediction for a sequence of events over time. We ask a relatively basic question: how might we compare these forecasters, either online or post-hoc, while avoiding unverifiable assumptions on how the forecasts and outcomes were generated? In this paper, we present a rigorous answer to this question by designing novel sequential inference procedures for estimating the time-varying difference in forecast scores. To do this, we employ confidence sequences (CS), which are sequences of confidence intervals that can be continuously monitored and are valid at arbitrary data-dependent stopping times ("anytime-valid"). The widths of our CSs are adaptive to the underlying variance of the score differences. Underlying their construction is a game-theoretic statistical framework, in which we further identify e-processes and p-processes for sequentially testing a weak null hypothesis -- whether one forecaster outperforms another on average (rather than always). Our methods do not make distributional assumptions on the forecasts or outcomes; our main theorems apply to any bounded scores, and we later provide alternative methods for unbounded scores. We empirically validate our approaches by comparing real-world baseball and weather forecasters.
Our objective is to formally verify the correctness of the hundreds of expression optimization rules used within the GraalVM compiler. When defining the semantics of a programming language, expressions naturally form abstract syntax trees, or, terms. However, in order to facilitate sharing of common subexpressions, modern compilers represent expressions as term graphs. Defining the semantics of term graphs is more complicated than defining the semantics of their equivalent term representations. More significantly, defining optimizations directly on term graphs and proving semantics preservation is considerably more complicated than on the equivalent term representations. On terms, optimizations can be expressed as conditional term rewriting rules, and proofs that the rewrites are semantics preserving are relatively straightforward. In this paper, we explore an approach to using term rewrites to verify term graph transformations of optimizations within the GraalVM compiler. This approach significantly reduces the overall verification effort and allows for simpler encoding of optimization rules.
In this paper, we revisit the class of iterative shrinkage-thresholding algorithms (ISTA) for solving the linear inverse problem with sparse representation, which arises in signal and image processing. It is shown in the numerical experiment to deblur an image that the convergence behavior in the logarithmic-scale ordinate tends to be linear instead of logarithmic, approximating to be flat. Making meticulous observations, we find that the previous assumption for the smooth part to be convex weakens the least-square model. Specifically, assuming the smooth part to be strongly convex is more reasonable for the least-square model, even though the image matrix is probably ill-conditioned. Furthermore, we improve the pivotal inequality tighter for composite optimization with the smooth part to be strongly convex instead of general convex, which is first found in [Li et al., 2022]. Based on this pivotal inequality, we generalize the linear convergence to composite optimization in both the objective value and the squared proximal subgradient norm. Meanwhile, we set a simple ill-conditioned matrix which is easy to compute the singular values instead of the original blur matrix. The new numerical experiment shows the proximal generalization of Nesterov's accelerated gradient descent (NAG) for the strongly convex function has a faster linear convergence rate than ISTA. Based on the tighter pivotal inequality, we also generalize the faster linear convergence rate to composite optimization, in both the objective value and the squared proximal subgradient norm, by taking advantage of the well-constructed Lyapunov function with a slight modification and the phase-space representation based on the high-resolution differential equation framework from the implicit-velocity scheme.
Knowledge graph reasoning (KGR), aiming to deduce new facts from existing facts based on mined logic rules underlying knowledge graphs (KGs), has become a fast-growing research direction. It has been proven to significantly benefit the usage of KGs in many AI applications, such as question answering and recommendation systems, etc. According to the graph types, the existing KGR models can be roughly divided into three categories, \textit{i.e.,} static models, temporal models, and multi-modal models. The early works in this domain mainly focus on static KGR and tend to directly apply general knowledge graph embedding models to the reasoning task. However, these models are not suitable for more complex but practical tasks, such as inductive static KGR, temporal KGR, and multi-modal KGR. To this end, multiple works have been developed recently, but no survey papers and open-source repositories comprehensively summarize and discuss models in this important direction. To fill the gap, we conduct a survey for knowledge graph reasoning tracing from static to temporal and then to multi-modal KGs. Concretely, the preliminaries, summaries of KGR models, and typical datasets are introduced and discussed consequently. Moreover, we discuss the challenges and potential opportunities. The corresponding open-source repository is shared on GitHub: //github.com/LIANGKE23/Awesome-Knowledge-Graph-Reasoning.
We propose a semiparametric test to evaluate (i) whether different instruments induce subpopulations of compliers with the same observable characteristics on average, and (ii) whether compliers have observable characteristics that are the same as the full population on average. The test is a flexible robustness check for the external validity of instruments. We use it to reinterpret the difference in LATE estimates that Angrist and Evans (1998) obtain when using different instrumental variables. To justify the test, we characterize the doubly robust moment for Abadie (2003)'s class of complier parameters, and we analyze a machine learning update to $\kappa$ weighting.
We present the formalization of Doob's martingale convergence theorems in the mathlib library for the Lean theorem prover. These theorems give conditions under which (sub)martingales converge, almost everywhere or in $L^1$. In order to formalize those results, we build a definition of the conditional expectation in Banach spaces and develop the theory of stochastic processes, stopping times and martingales. As an application of the convergence theorems, we also present the formalization of L\'evy's generalized Borel-Cantelli lemma. This work on martingale theory is one of the first developments of probability theory in mathlib, and it builds upon diverse parts of that library such as topology, analysis and most importantly measure theory.
The hybrid high-order method is a modern numerical framework for the approximation of elliptic PDEs. We present here an extension of the hybrid high-order method to meshes possessing curved edges/faces. Such an extension allows us to enforce boundary conditions exactly on curved domains, and capture curved geometries that appear internally in the domain e.g. discontinuities in a diffusion coefficient. The method makes use of non-polynomial functions on the curved faces and does not require any mappings between reference elements/faces. Such an approach does not require the faces to be polynomial, and has a strict upper bound on the number of degrees of freedom on a curved face for a given polynomial degree. Moreover, this approach of enriching the space of unknowns on the curved faces with non-polynomial functions should extend naturally to other polytopal methods. We show the method to be stable and consistent on curved meshes and derive optimal error estimates in L2 and energy norms. We present numerical examples of the method on a domain with curved boundary, and for a diffusion problem such that the diffusion tensor is discontinuous along a curved arc.
A preference system $\mathcal{I}$ is an undirected graph where vertices have preferences over their neighbors, and $\mathcal{I}$ admits a master list if all preferences can be derived from a single ordering over all vertices. We study the problem of deciding whether a given preference system $\mathcal{I}$ is close to admitting a master list based on three different distance measures. We determine the computational complexity of the following questions: can $\mathcal{I}$ be modified by (i) $k$ swaps in the preferences, (ii) $k$ edge deletions, or (iii) $k$ vertex deletions so that the resulting instance admits a master list? We investigate these problems in detail from the viewpoint of parameterized complexity and of approximation. We also present two applications related to stable and popular matchings.
Covid-19 has also led to far-reaching and long-lasting changes in people's life, such as increased flexibility in work arrangements. In the present longitudinal study, we investigate over 24 months and six measurement points how the well-being, productivity, social contacts, and needs of software engineers changed over time. We found changes for a range of variables. Variables such as levels of well-being increased while anxiety and loneliness decreased during the pandemic. Symmetrically, indicators of well-being (e.g., quality of social contacts) increased when lockdown measures were slowly lifted. On the other hand, other variables, including boredom and productivity, remained constant. Additionally, we run a preliminary investigation into the future of work at the end of the pandemic. A thematic analysis revealed that some form of hybrid work is here to stay. Also, we found that having previously changed jobs and low job satisfaction was reliably associated with the intention to change jobs again, in case the work condition is not deemed adequate to developers' needs. This suggests specific challenges for software organizations that need to tailor various work arrangements if they want to be attractive employers. We conclude this paper with several actionable recommendations.