亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Emerging applications of robotics, and concerns about their impact, require the research community to put human-centric objectives front-and-center. To meet this challenge, we advocate an interdisciplinary approach, socially cognizant robotics, which synthesizes technical and social science methods. We argue that this approach follows from the need to empower stakeholder participation (from synchronous human feedback to asynchronous societal assessment) in shaping AI-driven robot behavior at all levels, and leads to a range of novel research perspectives and problems both for improving robots' interactions with individuals and impacts on society. Drawing on these arguments, we develop best practices for socially cognizant robot design that balance traditional technology-based metrics (e.g. efficiency, precision and accuracy) with critically important, albeit challenging to measure, human and society-based metrics.

相關內容

機器人(英語:Robot)包括一切模擬人類行為或思想與模擬其他生物的機械(如機器狗,機器貓等)。狹義上對機器人的定義還有很多分類法及爭議,有些電腦程序甚至也被稱為機器人。在當代工業中,機器人指能自動運行任務的人造機器設備,用以取代或協助人類工作,一般會是機電設備,由計算機程序或是電子電路控制。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

A growing body of research on probabilistic programs and causal models has highlighted the need to reason compositionally about model classes that extend directed graphical models. Both probabilistic programs and causal models define a joint probability density over a set of random variables, and exhibit sparse structure that can be used to reason about causation and conditional independence. This work builds on recent work on Markov categories of probabilistic mappings to define a category whose morphisms combine a joint density, factorized over each sample space, with a deterministic mapping from samples to return values. This is a step towards closing the gap between recent category-theoretic descriptions of probability measures, and the operational definitions of factorized densities that are commonly employed in probabilistic programming and causal inference.

When modeling complex robot systems such as branched robots, whose kinematic structures are a tree, current techniques often require modeling the whole structure from scratch, even when partial models for the branches are available. This paper proposes a systematic modular procedure for the dynamic modeling of branched robots comprising several subsystems, each composed of an arbitrary number of rigid bodies, providing the final dynamic model by reusing previous models of each branch. Unlike previous approaches, the proposed strategy is applicable even if some subsystems are regarded as black boxes, requiring only twists and wrenches at the connection points between them. To help in the model composition, we also propose a weighted directed graph representation where the weights encode the propagation of twists and wrenches between the subsystems. A simple linear operation on the graph interconnection matrix provides the dynamics of the whole system. Numerical results using a 24-DoF fixed-base branched robot composed of eight subsystems show that the proposed formalism is as accurate as a state-of-the-art library for robotic dynamic modeling. Additional results using a 30-DoF holonomic branched mobile manipulator composed of three subsystems demonstrate the fidelity of our model to a modern robotics simulator and its capability of dealing with black box subsystems. To further illustrate how the derived dynamic model can be used in closed-loop control, we also present a simple formulation of a model-based wrench-driven pose control for branched robots.

In research of manufacturing systems and autonomous robots, the term capability is used for a machine-interpretable specification of a system function. Approaches in this research area develop information models that capture all information relevant to interpret the requirements, effects and behavior of functions. These approaches are intended to overcome the heterogeneity resulting from the various types of processes and from the large number of different vendors. However, these models and associated methods do not offer solutions for automated process planning, i.e. finding a sequence of individual capabilities required to manufacture a certain product or to accomplish a mission using autonomous robots. Instead, this is a typical task for AI planning approaches, which unfortunately require a high effort to create the respective planning problem descriptions. In this paper, we present an approach that combines these two topics: Starting from a semantic capability model, an AI planning problem is automatically generated. The planning problem is encoded using Satisfiability Modulo Theories and uses an existing solver to find valid capability sequences including required parameter values. The approach also offers possibilities to integrate existing human expertise and to provide explanations for human operators in order to help understand planning decisions.

Conformal prediction is a statistical tool for producing prediction regions of machine learning models that are valid with high probability. However, applying conformal prediction to time series data leads to conservative prediction regions. In fact, to obtain prediction regions over $T$ time steps with confidence $1-\delta$, {previous works require that each individual prediction region is valid} with confidence $1-\delta/T$. We propose an optimization-based method for reducing this conservatism to enable long horizon planning and verification when using learning-enabled time series predictors. Instead of considering prediction errors individually at each time step, we consider a parameterized prediction error over multiple time steps. By optimizing the parameters over an additional dataset, we find prediction regions that are not conservative. We show that this problem can be cast as a mixed integer linear complementarity program (MILCP), which we then relax into a linear complementarity program (LCP). Additionally, we prove that the relaxed LP has the same optimal cost as the original MILCP. Finally, we demonstrate the efficacy of our method on case studies using pedestrian trajectory predictors and F16 fighter jet altitude predictors.

Increasing and massive volumes of trajectory data are being accumulated that may serve a variety of applications, such as mining popular routes or identifying ridesharing candidates. As storing and querying massive trajectory data is costly, trajectory simplification techniques have been introduced that intuitively aim to reduce the sizes of trajectories, thus reducing storage and speeding up querying, while preserving as much information as possible. Existing techniques rely mainly on hand-crafted error measures when deciding which point to drop when simplifying a trajectory. While the hope may be that such simplification affects the subsequent usability of the data only minimally, the usability of the simplified data remains largely unexplored. Instead of using error measures that indirectly may to some extent yield simplified trajectories with high usability, we adopt a direct approach to simplification and present the first study of query accuracy driven trajectory simplification, where the direct objective is to achieve a simplified trajectory database that preserves the query accuracy of the original database as much as possible. Specifically, we propose a multi-agent reinforcement learning based solution with two agents working cooperatively to collectively simplify trajectories in a database while optimizing query usability. Extensive experiments on four real-world trajectory datasets show that the solution is capable of consistently outperforming baseline solutions over various query types and dynamics.

The importance of effective detection is underscored by the fact that socialbots imitate human behavior to propagate misinformation, leading to an ongoing competition between socialbots and detectors. Despite the rapid advancement of reactive detectors, the exploration of adversarial socialbot modeling remains incomplete, significantly hindering the development of proactive detectors. To address this issue, we propose a mathematical Structural Information principles-based Adversarial Socialbots Modeling framework, namely SIASM, to enable more accurate and effective modeling of adversarial behaviors. First, a heterogeneous graph is presented to integrate various users and rich activities in the original social network and measure its dynamic uncertainty as structural entropy. By minimizing the high-dimensional structural entropy, a hierarchical community structure of the social network is generated and referred to as the optimal encoding tree. Secondly, a novel method is designed to quantify influence by utilizing the assigned structural entropy, which helps reduce the computational cost of SIASM by filtering out uninfluential users. Besides, a new conditional structural entropy is defined between the socialbot and other users to guide the follower selection for network influence maximization. Extensive and comparative experiments on both homogeneous and heterogeneous social networks demonstrate that, compared with state-of-the-art baselines, the proposed SIASM framework yields substantial performance improvements in terms of network influence (up to 16.32%) and sustainable stealthiness (up to 16.29%) when evaluated against a robust detector with 90% accuracy.

Management of network resources in advanced IoT applications is a challenging topic due to their distributed nature from the Edge to the Cloud, and the heavy demand of real-time data from many sources to take action in the deployment. FANETs (Flying Ad-hoc Networks) are a clear example of heterogeneous multi-modal use cases, which require strict quality in the network communications, as well as the coordination of the computing capabilities, in order to operate correctly the final service. In this paper, we present a Virtual Network Embedding (VNE) framework designed for the allocation of dataflow applications, composed of nano-services that produce or consume data, in a wireless infrastructure, such as an airborne network. To address the problem, an anypath-based heuristic algorithm that considers the quality demand of the communication between nano-services is proposed, coined as Quality-Revenue Paired Anypath Dataflow VNE (QRPAD-VNE). We also provide a simulation environment for the evaluation of its performance according to the virtual network (VN) request load in the system. Finally, we show the suitability of a multi-parameter framework in conjunction with anypath routing in order to have better performance results that guarantee minimum quality in the wireless communications.

Mathematical reasoning is a fundamental aspect of human intelligence and is applicable in various fields, including science, engineering, finance, and everyday life. The development of artificial intelligence (AI) systems capable of solving math problems and proving theorems has garnered significant interest in the fields of machine learning and natural language processing. For example, mathematics serves as a testbed for aspects of reasoning that are challenging for powerful deep learning models, driving new algorithmic and modeling advances. On the other hand, recent advances in large-scale neural language models have opened up new benchmarks and opportunities to use deep learning for mathematical reasoning. In this survey paper, we review the key tasks, datasets, and methods at the intersection of mathematical reasoning and deep learning over the past decade. We also evaluate existing benchmarks and methods, and discuss future research directions in this domain.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.

北京阿比特科技有限公司