Multimodal Large Language Models (MLLMs) have gained significant attention recently, showing remarkable potential in artificial general intelligence. However, assessing the utility of MLLMs presents considerable challenges, primarily due to the absence multimodal benchmarks that align with human preferences. Inspired by LLM-as-a-Judge in LLMs, this paper introduces a novel benchmark, termed MLLM-as-a-Judge, to assess the ability of MLLMs in assisting judges including three distinct tasks: Scoring Evaluation, Pair Comparison, and Batch Ranking. Our study reveals that, while MLLMs demonstrate remarkable human-like discernment in Pair Comparisons, there is a significant divergence from human preferences in Scoring Evaluation and Batch Ranking tasks. Furthermore, MLLMs still face challenges in judgment, including diverse biases, hallucinatory responses, and inconsistencies, even for advanced models such as GPT-4V. These findings emphasize the pressing need for enhancements and further research efforts regarding MLLMs as fully reliable evaluators. Code and dataset are available at //github.com/Dongping-Chen/MLLM-as-a-Judge.
The majority of recent progress in Optical Music Recognition (OMR) has been achieved with Deep Learning methods, especially models following the end-to-end paradigm, reading input images and producing a linear sequence of tokens. Unfortunately, many music scores, especially piano music, cannot be easily converted to a linear sequence. This has led OMR researchers to use custom linearized encodings, instead of broadly accepted structured formats for music notation. Their diversity makes it difficult to compare the performance of OMR systems directly. To bring recent OMR model progress closer to useful results: (a) We define a sequential format called Linearized MusicXML, allowing to train an end-to-end model directly and maintaining close cohesion and compatibility with the industry-standard MusicXML format. (b) We create a dev and test set for benchmarking typeset OMR with MusicXML ground truth based on the OpenScore Lieder corpus. They contain 1,438 and 1,493 pianoform systems, each with an image from IMSLP. (c) We train and fine-tune an end-to-end model to serve as a baseline on the dataset and employ the TEDn metric to evaluate the model. We also test our model against the recently published synthetic pianoform dataset GrandStaff and surpass the state-of-the-art results.
With the rapid development of generative models, Artificial Intelligence-Generated Contents (AIGC) have exponentially increased in daily lives. Among them, Text-to-Video (T2V) generation has received widespread attention. Though many T2V models have been released for generating high perceptual quality videos, there is still lack of a method to evaluate the quality of these videos quantitatively. To solve this issue, we establish the largest-scale Text-to-Video Quality Assessment DataBase (T2VQA-DB) to date. The dataset is composed of 10,000 videos generated by 9 different T2V models. We also conduct a subjective study to obtain each video's corresponding mean opinion score. Based on T2VQA-DB, we propose a novel transformer-based model for subjective-aligned Text-to-Video Quality Assessment (T2VQA). The model extracts features from text-video alignment and video fidelity perspectives, then it leverages the ability of a large language model to give the prediction score. Experimental results show that T2VQA outperforms existing T2V metrics and SOTA video quality assessment models. Quantitative analysis indicates that T2VQA is capable of giving subjective-align predictions, validating its effectiveness. The dataset and code will be released at //github.com/QMME/T2VQA.
Fine-tuning techniques based on Large Pretrained Language Models (LPLMs) have been proven to significantly enhance model performance on a variety of downstream tasks and effectively control the output behaviors of LPLMs. Recent studies have proposed numerous methods for fine-tuning a small number of parameters based on open-source LPLMs, reducing the demand for computational and storage resources. Among these, reparameterization fine-tuning methods represented by LoRA (Low-Rank Adaptation) have gained popularity. We find that although these methods perform well in many aspects, there is still considerable room for improvement in terms of complex task adaptability, performance, stability, and algorithm complexity. In response to this, inspired by the idea that the functions of the brain are shaped by its geometric structure, this paper integrates this idea into LoRA technology and proposes a new matrix transformation-based reparameterization method for efficient fine-tuning, named Matrix-Transformation based Low-Rank Adaptation (MTLoRA). MTLoRA aims to dynamically alter its spatial geometric structure by applying a transformation-matrix T to perform linear transformations, such as rotation, scaling, and translation, on the task-specific parameter matrix, generating new matrix feature patterns (eigenvectors) to mimic the fundamental influence of complex geometric structure feature patterns in the brain on functions, thereby enhancing the model's performance in downstream tasks. In Natural Language Understanding (NLU) tasks, it is evaluated using the GLUE benchmark test, and the results reveal that MTLoRA achieves an overall performance increase of about 1.0% across eight tasks; in Natural Language Generation (NLG) tasks, MTLoRA improves performance by an average of 0.95% and 0.56% in the DART and WebNLG tasks, respectively.
Large Language Models (LLMs) have demonstrated remarkable progress in utilizing tools, but their closed-source nature and high inference costs pose limitations on their adaptability, necessitating a valid method that leverages smaller, open-sourced models. In this paper, we introduce Toolink, a comprehensive framework that performs task-solving by first creating a toolkit and then integrating the planning and calling of tools through a chain-of-solving (CoS) approach. We first validate the efficacy of Toolink in harnessing the model's creativity and CoS ability on ChatGPT. Subsequently, we curate CoS-GPT, a chain-of-solving dataset designed for tool-using, and finetune the LLaMA-7B model. It results in LLaMA-CoS, a powerful open-source model with advanced tool-planning and tool-calling capabilities. Evaluation of diverse tasks from BIG-bench demonstrates its CoS ability matches that of ChatGPT while its performance surpasses the chain-of-thought approach. Further studies highlight the generalization of LLaMA-CoS to unseen tasks and showcase its capability in using toolkits not explicitly tailored for the target task, affirming its robustness in real-world scenarios.
Document-level Event Causality Identification (DECI) aims to identify causal relations between two events in documents. Recent research tends to use pre-trained language models to generate the event causal relations. Whereas, these methods are prone to the errors of sequential generation due to multiple events in a document. Moreover, the potential structures such as event coreference and related causal chain are neglected. In this paper, we propose a multi-task learning framework to enhance event causality identification with rationale and structure-aware causal question answering. Specifically, the DECI task is transformed into multiple-choice question answering, and the causes and effects of the questioned event are generated with large language models. In addition, we generate the rationales to explain why these events have causal relations. Moreover, we construct an event structure graph, which models the multi-hop potential relations for causal reasoning of the current event. Experiments on two benchmark datasets show the great advantages of our proposed approach compared to the state-of-the-art methods. Moreover, we conduct both quantitative and qualitative analyses, which shed light on why each component of our approach can lead to great improvements.
Multimodal Large Language Models (MLLMs) have showcased impressive skills in tasks related to visual understanding and reasoning. Yet, their widespread application faces obstacles due to the high computational demands during both the training and inference phases, restricting their use to a limited audience within the research and user communities. In this paper, we investigate the design aspects of Multimodal Small Language Models (MSLMs) and propose an efficient multimodal assistant named Mipha, which is designed to create synergy among various aspects: visual representation, language models, and optimization strategies. We show that without increasing the volume of training data, our Mipha-3B outperforms the state-of-the-art large MLLMs, especially LLaVA-1.5-13B, on multiple benchmarks. Through detailed discussion, we provide insights and guidelines for developing strong MSLMs that rival the capabilities of MLLMs. Our code is available at //github.com/zhuyiche/Mipha.
Vision-based occupancy prediction, also known as 3D Semantic Scene Completion (SSC), presents a significant challenge in computer vision. Previous methods, confined to onboard processing, struggle with simultaneous geometric and semantic estimation, continuity across varying viewpoints, and single-view occlusion. Our paper introduces OccFiner, a novel offboard framework designed to enhance the accuracy of vision-based occupancy predictions. OccFiner operates in two hybrid phases: 1) a multi-to-multi local propagation network that implicitly aligns and processes multiple local frames for correcting onboard model errors and consistently enhancing occupancy accuracy across all distances. 2) the region-centric global propagation, focuses on refining labels using explicit multi-view geometry and integrating sensor bias, especially to increase the accuracy of distant occupied voxels. Extensive experiments demonstrate that OccFiner improves both geometric and semantic accuracy across various types of coarse occupancy, setting a new state-of-the-art performance on the SemanticKITTI dataset. Notably, OccFiner elevates vision-based SSC models to a level even surpassing that of LiDAR-based onboard SSC models.
Conventional text-to-SQL parsers are not good at synthesizing complex SQL queries that involve multiple tables or columns, due to the challenges inherent in identifying the correct schema items and performing accurate alignment between question and schema items. To address the above issue, we present a schema-aware multi-task learning framework (named MTSQL) for complicated SQL queries. Specifically, we design a schema linking discriminator module to distinguish the valid question-schema linkings, which explicitly instructs the encoder by distinctive linking relations to enhance the alignment quality. On the decoder side, we define 6-type relationships to describe the connections between tables and columns (e.g., WHERE_TC), and introduce an operator-centric triple extractor to recognize those associated schema items with the predefined relationship. Also, we establish a rule set of grammar constraints via the predicted triples to filter the proper SQL operators and schema items during the SQL generation. On Spider, a cross-domain challenging text-to-SQL benchmark, experimental results indicate that MTSQL is more effective than baselines, especially in extremely hard scenarios. Moreover, further analyses verify that our approach leads to promising improvements for complicated SQL queries.
Recently, ChatGPT, along with DALL-E-2 and Codex,has been gaining significant attention from society. As a result, many individuals have become interested in related resources and are seeking to uncover the background and secrets behind its impressive performance. In fact, ChatGPT and other Generative AI (GAI) techniques belong to the category of Artificial Intelligence Generated Content (AIGC), which involves the creation of digital content, such as images, music, and natural language, through AI models. The goal of AIGC is to make the content creation process more efficient and accessible, allowing for the production of high-quality content at a faster pace. AIGC is achieved by extracting and understanding intent information from instructions provided by human, and generating the content according to its knowledge and the intent information. In recent years, large-scale models have become increasingly important in AIGC as they provide better intent extraction and thus, improved generation results. With the growth of data and the size of the models, the distribution that the model can learn becomes more comprehensive and closer to reality, leading to more realistic and high-quality content generation. This survey provides a comprehensive review on the history of generative models, and basic components, recent advances in AIGC from unimodal interaction and multimodal interaction. From the perspective of unimodality, we introduce the generation tasks and relative models of text and image. From the perspective of multimodality, we introduce the cross-application between the modalities mentioned above. Finally, we discuss the existing open problems and future challenges in AIGC.
Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the model scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, \ie node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN outperforms the state-of-the-art GNN-based methods for few-shot learning over the mini-ImageNet and Tiered-ImageNet datasets, with both inductive and transductive settings.