亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As deep neural models in NLP become more complex, and as a consequence opaque, the necessity to interpret them becomes greater. A burgeoning interest has emerged in rationalizing explanations to provide short and coherent justifications for predictions. In this position paper, we advocate for a formal framework for key concepts and properties about rationalizing explanations to support their evaluation systematically. We also outline one such formal framework, tailored to rationalizing explanations of increasingly complex structures, from free-form explanations to deductive explanations, to argumentative explanations (with the richest structure). Focusing on the automated fact verification task, we provide illustrations of the use and usefulness of our formalization for evaluating explanations, tailored to their varying structures.

相關內容

Automator是蘋果公司為他們的Mac OS X系統開發的一款軟件。 只要通過點擊拖拽鼠標等操作就可以將一系列動作組合成一個工作流,從而幫助你自動的(可重復的)完成一些復雜的工作。Automator還能橫跨很多不同種類的程序,包括:查找器、Safari網絡瀏覽器、iCal、地址簿或者其他的一些程序。它還能和一些第三方的程序一起工作,如微軟的Office、Adobe公司的Photoshop或者Pixelmator等。

Simplicity bias, the propensity of deep models to over-rely on simple features, has been identified as a potential reason for limited out-of-distribution generalization of neural networks (Shah et al., 2020). Despite the important implications, this phenomenon has been theoretically confirmed and characterized only under strong dataset assumptions, such as linear separability (Lyu et al., 2021). In this work, we characterize simplicity bias for general datasets in the context of two-layer neural networks initialized with small weights and trained with gradient flow. Specifically, we prove that in the early training phases, network features cluster around a few directions that do not depend on the size of the hidden layer. Furthermore, for datasets with an XOR-like pattern, we precisely identify the learned features and demonstrate that simplicity bias intensifies during later training stages. These results indicate that features learned in the middle stages of training may be more useful for OOD transfer. We support this hypothesis with experiments on image data.

Despite being a heavily researched topic, Adversarial Training (AT) is rarely, if ever, deployed in practical AI systems for two primary reasons: (i) the gained robustness is frequently accompanied by a drop in generalization and (ii) generating adversarial examples (AEs) is computationally prohibitively expensive. To address these limitations, we propose SMAAT, a new AT algorithm that leverages the manifold conjecture, stating that off-manifold AEs lead to better robustness while on-manifold AEs result in better generalization. Specifically, SMAAT aims at generating a higher proportion of off-manifold AEs by perturbing the intermediate deepnet layer with the lowest intrinsic dimension. This systematically results in better scalability compared to classical AT as it reduces the PGD chains length required for generating the AEs. Additionally, our study provides, to the best of our knowledge, the first explanation for the difference in the generalization and robustness trends between vision and language models, ie., AT results in a drop in generalization in vision models whereas, in encoder-based language models, generalization either improves or remains unchanged. We show that vision transformers and decoder-based models tend to have low intrinsic dimensionality in the earlier layers of the network (more off-manifold AEs), while encoder-based models have low intrinsic dimensionality in the later layers. We demonstrate the efficacy of SMAAT; on several tasks, including robustifying (i) sentiment classifiers, (ii) safety filters in decoder-based models, and (iii) retrievers in RAG setups. SMAAT requires only 25-33% of the GPU time compared to standard AT, while significantly improving robustness across all applications and maintaining comparable generalization.

Quantum computing holds the potential to solve problems that are practically unsolvable by classical computers due to its ability to significantly reduce time complexity. We aim to harness this potential to enhance ray casting, a pivotal technique in computer graphics for simplifying the rendering of 3D objects. To perform ray casting in a quantum computer, we need to encode the defining parameters of primitives into qubits. However, during the current noisy intermediate-scale quantum (NISQ) era, challenges arise from the limited number of qubits and the impact of noise when executing multiple gates. Through logic optimization, we reduced the depth of quantum circuits as well as the number of gates and qubits. As a result, the event count of correct measurements from an IBM quantum computer significantly exceeded that of incorrect measurements.

Instructing the model to generate a sequence of intermediate steps, a.k.a., a chain of thought (CoT), is a highly effective method to improve the accuracy of large language models (LLMs) on arithmetics and symbolic reasoning tasks. However, the mechanism behind CoT remains unclear. This work provides a theoretical understanding of the power of CoT for decoder-only transformers through the lens of expressiveness. Conceptually, CoT empowers the model with the ability to perform inherently serial computation, which is otherwise lacking in transformers, especially when depth is low. Given input length $n$, previous works have shown that constant-depth transformers with finite precision $\mathsf{poly}(n)$ embedding size can only solve problems in $\mathsf{TC}^0$ without CoT. We first show an even tighter expressiveness upper bound for constant-depth transformers with constant-bit precision, which can only solve problems in $\mathsf{AC}^0$, a proper subset of $ \mathsf{TC}^0$. However, with $T$ steps of CoT, constant-depth transformers using constant-bit precision and $O(\log n)$ embedding size can solve any problem solvable by boolean circuits of size $T$. Empirically, enabling CoT dramatically improves the accuracy for tasks that are hard for parallel computation, including the composition of permutation groups, iterated squaring, and circuit value problems, especially for low-depth transformers.

The rapid development of collaborative robotics has provided a new possibility of helping the elderly who has difficulties in daily life, allowing robots to operate according to specific intentions. However, efficient human-robot cooperation requires natural, accurate and reliable intention recognition in shared environments. The current paramount challenge for this is reducing the uncertainty of multimodal fused intention to be recognized and reasoning adaptively a more reliable result despite current interactive condition. In this work we propose a novel learning-based multimodal fusion framework Batch Multimodal Confidence Learning for Opinion Pool (BMCLOP). Our approach combines Bayesian multimodal fusion method and batch confidence learning algorithm to improve accuracy, uncertainty reduction and success rate given the interactive condition. In particular, the generic and practical multimodal intention recognition framework can be easily extended further. Our desired assistive scenarios consider three modalities gestures, speech and gaze, all of which produce categorical distributions over all the finite intentions. The proposed method is validated with a six-DoF robot through extensive experiments and exhibits high performance compared to baselines.

The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.

As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.

Deep neural models in recent years have been successful in almost every field, including extremely complex problem statements. However, these models are huge in size, with millions (and even billions) of parameters, thus demanding more heavy computation power and failing to be deployed on edge devices. Besides, the performance boost is highly dependent on redundant labeled data. To achieve faster speeds and to handle the problems caused by the lack of data, knowledge distillation (KD) has been proposed to transfer information learned from one model to another. KD is often characterized by the so-called `Student-Teacher' (S-T) learning framework and has been broadly applied in model compression and knowledge transfer. This paper is about KD and S-T learning, which are being actively studied in recent years. First, we aim to provide explanations of what KD is and how/why it works. Then, we provide a comprehensive survey on the recent progress of KD methods together with S-T frameworks typically for vision tasks. In general, we consider some fundamental questions that have been driving this research area and thoroughly generalize the research progress and technical details. Additionally, we systematically analyze the research status of KD in vision applications. Finally, we discuss the potentials and open challenges of existing methods and prospect the future directions of KD and S-T learning.

Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司