The volume and diversity of training data are critical for modern deep learningbased methods. Compared to the massive amount of labeled perspective images, 360 panoramic images fall short in both volume and diversity. In this paper, we propose PanoMixSwap, a novel data augmentation technique specifically designed for indoor panoramic images. PanoMixSwap explicitly mixes various background styles, foreground furniture, and room layouts from the existing indoor panorama datasets and generates a diverse set of new panoramic images to enrich the datasets. We first decompose each panoramic image into its constituent parts: background style, foreground furniture, and room layout. Then, we generate an augmented image by mixing these three parts from three different images, such as the foreground furniture from one image, the background style from another image, and the room structure from the third image. Our method yields high diversity since there is a cubical increase in image combinations. We also evaluate the effectiveness of PanoMixSwap on two indoor scene understanding tasks: semantic segmentation and layout estimation. Our experiments demonstrate that state-of-the-art methods trained with PanoMixSwap outperform their original setting on both tasks consistently.
With continuous advances in deep learning, distributed training is becoming common in GPU clusters. Specifically, for emerging workloads with diverse amounts, ratios, and patterns of communication, we observe that network contention can significantly degrade training throughput. However, widely used scheduling policies often face limitations as they are agnostic to network contention between jobs. In this paper, we present a new approach to mitigate network contention in GPU clusters using reinforcement learning. We formulate GPU cluster scheduling as a reinforcement learning problem and opt to learn a network contention-aware scheduling policy that efficiently captures contention sensitivities and dynamically adapts scheduling decisions through continuous evaluation and improvement. We show that compared to widely used scheduling policies, our approach reduces average job completion time by up to 18.2\% and effectively cuts the tail job completion time by up to 20.7\% while allowing a preferable trade-off between average job completion time and resource utilization.
Resampling methods such as the bootstrap have proven invaluable in the field of machine learning. However, the applicability of traditional bootstrap methods is limited when dealing with large streams of dependent data, such as time series or spatially correlated observations. In this paper, we propose a novel bootstrap method that is designed to account for data dependencies and can be executed online, making it particularly suitable for real-time applications. This method is based on an autoregressive sequence of increasingly dependent resampling weights. We prove the theoretical validity of the proposed bootstrap scheme under general conditions. We demonstrate the effectiveness of our approach through extensive simulations and show that it provides reliable uncertainty quantification even in the presence of complex data dependencies. Our work bridges the gap between classical resampling techniques and the demands of modern data analysis, providing a valuable tool for researchers and practitioners in dynamic, data-rich environments.
Though supervised learning gains impressive success, the acquisition of indispensable large-scale labeled datasets are often impractical in biomedical imaging partially due to expensive costs and lengthy annotations done by experienced radiologists. Semi-supervised learning has been shown to be an effective way to address this limitation by leveraging useful information from unlabeled datasets. In this paper, we present a new semi-supervised learning method referred to as Dual-Decoder Consistency via Pseudo-Labels Guided Data Augmentation (DCPA) for medical image segmentation. We devise a consistency regularization to improve the semi-supervised learning. Specifically, to promote consistent representations during the training process, we use different decoders for student and teachers networks while maintain the same encoder. Moreover, to learn from unlabeled data, we create pseudo-labels generated by the teacher networks and augment the training data with the pseudo-labels. The two techniques contribute to the improved performance of the proposed method. We evaluate the performance of the proposed method on three representative medical image segmentation datasets. Extensive comparisons to the state-of-the-art medical image segmentation methods were carried out under typical scenarios with 10% and 20% labeled data. Experimental outcomes demonstrate that our method consistently outperforms state-of-the-art semi-supervised medical image segmentation methods over the three semi-supervised settings. Furthermore, to explore the performance of proposed method under extreme condition, we conduct experiments with only 5% labeled data. The results further verify the superior performance of the proposed method. Source code is publicly online at //github.com/BinYCn/DCPA.git.
Robots performing human-scale manipulation tasks require an extensive amount of knowledge about their surroundings in order to perform their actions competently and human-like. In this work, we investigate the use of virtual reality technology as an implementation for robot environment modeling, and present a technique for translating scene graphs into knowledge bases. To this end, we take advantage of the Universal Scene Description (USD) format which is an emerging standard for the authoring, visualization and simulation of complex environments. We investigate the conversion of USD-based environment models into Knowledge Graph (KG) representations that facilitate semantic querying and integration with additional knowledge sources.
Algorithmic reproducibility measures the deviation in outputs of machine learning algorithms upon minor changes in the training process. Previous work suggests that first-order methods would need to trade-off convergence rate (gradient complexity) for better reproducibility. In this work, we challenge this perception and demonstrate that both optimal reproducibility and near-optimal convergence guarantees can be achieved for smooth convex minimization and smooth convex-concave minimax problems under various error-prone oracle settings. Particularly, given the inexact initialization oracle, our regularization-based algorithms achieve the best of both worlds - optimal reproducibility and near-optimal gradient complexity - for minimization and minimax optimization. With the inexact gradient oracle, the near-optimal guarantees also hold for minimax optimization. Additionally, with the stochastic gradient oracle, we show that stochastic gradient descent ascent is optimal in terms of both reproducibility and gradient complexity. We believe our results contribute to an enhanced understanding of the reproducibility-convergence trade-off in the context of convex optimization.
Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).
Deep learning has yielded state-of-the-art performance on many natural language processing tasks including named entity recognition (NER). However, this typically requires large amounts of labeled data. In this work, we demonstrate that the amount of labeled training data can be drastically reduced when deep learning is combined with active learning. While active learning is sample-efficient, it can be computationally expensive since it requires iterative retraining. To speed this up, we introduce a lightweight architecture for NER, viz., the CNN-CNN-LSTM model consisting of convolutional character and word encoders and a long short term memory (LSTM) tag decoder. The model achieves nearly state-of-the-art performance on standard datasets for the task while being computationally much more efficient than best performing models. We carry out incremental active learning, during the training process, and are able to nearly match state-of-the-art performance with just 25\% of the original training data.
Recently, deep learning has achieved very promising results in visual object tracking. Deep neural networks in existing tracking methods require a lot of training data to learn a large number of parameters. However, training data is not sufficient for visual object tracking as annotations of a target object are only available in the first frame of a test sequence. In this paper, we propose to learn hierarchical features for visual object tracking by using tree structure based Recursive Neural Networks (RNN), which have fewer parameters than other deep neural networks, e.g. Convolutional Neural Networks (CNN). First, we learn RNN parameters to discriminate between the target object and background in the first frame of a test sequence. Tree structure over local patches of an exemplar region is randomly generated by using a bottom-up greedy search strategy. Given the learned RNN parameters, we create two dictionaries regarding target regions and corresponding local patches based on the learned hierarchical features from both top and leaf nodes of multiple random trees. In each of the subsequent frames, we conduct sparse dictionary coding on all candidates to select the best candidate as the new target location. In addition, we online update two dictionaries to handle appearance changes of target objects. Experimental results demonstrate that our feature learning algorithm can significantly improve tracking performance on benchmark datasets.