Adversarial contrastive learning (ACL) is a technique that enhances standard contrastive learning (SCL) by incorporating adversarial data to learn a robust representation that can withstand adversarial attacks and common corruptions without requiring costly annotations. To improve transferability, the existing work introduced the standard invariant regularization (SIR) to impose style-independence property to SCL, which can exempt the impact of nuisance style factors in the standard representation. However, it is unclear how the style-independence property benefits ACL-learned robust representations. In this paper, we leverage the technique of causal reasoning to interpret the ACL and propose adversarial invariant regularization (AIR) to enforce independence from style factors. We regulate the ACL using both SIR and AIR to output the robust representation. Theoretically, we show that AIR implicitly encourages the representational distance between different views of natural data and their adversarial variants to be independent of style factors. Empirically, our experimental results show that invariant regularization significantly improves the performance of state-of-the-art ACL methods in terms of both standard generalization and robustness on downstream tasks. To the best of our knowledge, we are the first to apply causal reasoning to interpret ACL and develop AIR for enhancing ACL-learned robust representations. Our source code is at //github.com/GodXuxilie/Enhancing_ACL_via_AIR.
Beamforming is a powerful tool for physical layer security, as it can be used for steering signals towards legitimate receivers and away from eavesdroppers. An active eavesdropper, however, can interfere with the pilot phase that the transmitter needs to acquire the channel knowledge necessary for beamforming. By doing so, the eavesdropper can make the transmitter form beams towards the eavesdropper rather than towards the legitimate receiver. To mitigate active eavesdroppers, we propose VILLAIN, a novel channel estimator that uses secret pilots. When an eavesdropper interferes with the pilot phase, VILLAIN produces a channel estimate that is orthogonal to the eavesdropper's channel (in the noiseless case). We prove that beamforming based on this channel estimate delivers the highest possible signal power to the legitimate receiver without delivering any signal power to the eavesdropper. Simulations show that VILLAIN mitigates active eavesdroppers also in the noisy case.
Regularization is a critical component in deep learning training, with weight decay being a commonly used approach. It applies a constant penalty coefficient uniformly across all parameters. This may be unnecessarily restrictive for some parameters, while insufficiently restricting others. To dynamically adjust penalty coefficients for different parameter groups, we present constrained parameter regularization (CPR) as an alternative to traditional weight decay. Instead of applying a single constant penalty to all parameters, we enforce an upper bound on a statistical measure (e.g., the L$_2$-norm) of parameter groups. Consequently, learning becomes a constraint optimization problem, which we address by an adaptation of the augmented Lagrangian method. CPR only requires two hyperparameters and incurs no measurable runtime overhead. Additionally, we propose a simple but efficient mechanism to adapt the upper bounds during the optimization. We provide empirical evidence of CPR's efficacy in experiments on the "grokking" phenomenon, computer vision, and language modeling tasks. Our results demonstrate that CPR counteracts the effects of grokking and consistently matches or outperforms traditional weight decay.
Imitation learning methods seek to learn from an expert either through behavioral cloning (BC) of the policy or inverse reinforcement learning (IRL) of the reward. Such methods enable agents to learn complex tasks from humans that are difficult to capture with hand-designed reward functions. Choosing BC or IRL for imitation depends on the quality and state-action coverage of the demonstrations, as well as additional access to the Markov decision process. Hybrid strategies that combine BC and IRL are not common, as initial policy optimization against inaccurate rewards diminishes the benefit of pretraining the policy with BC. This work derives an imitation method that captures the strengths of both BC and IRL. In the entropy-regularized ('soft') reinforcement learning setting, we show that the behaviour-cloned policy can be used as both a shaped reward and a critic hypothesis space by inverting the regularized policy update. This coherency facilitates fine-tuning cloned policies using the reward estimate and additional interactions with the environment. This approach conveniently achieves imitation learning through initial behaviour cloning, followed by refinement via RL with online or offline data sources. The simplicity of the approach enables graceful scaling to high-dimensional and vision-based tasks, with stable learning and minimal hyperparameter tuning, in contrast to adversarial approaches. For the open-source implementation and simulation results, see //joemwatson.github.io/csil/.
We propose a novel machine learning algorithm for simulating radiative transfer. Our algorithm is based on physics informed neural networks (PINNs), which are trained by minimizing the residual of the underlying radiative tranfer equations. We present extensive experiments and theoretical error estimates to demonstrate that PINNs provide a very easy to implement, fast, robust and accurate method for simulating radiative transfer. We also present a PINN based algorithm for simulating inverse problems for radiative transfer efficiently.
Graph Convolutional Network (GCN) has achieved extraordinary success in learning effective task-specific representations of nodes in graphs. However, regarding Heterogeneous Information Network (HIN), existing HIN-oriented GCN methods still suffer from two deficiencies: (1) they cannot flexibly explore all possible meta-paths and extract the most useful ones for a target object, which hinders both effectiveness and interpretability; (2) they often need to generate intermediate meta-path based dense graphs, which leads to high computational complexity. To address the above issues, we propose an interpretable and efficient Heterogeneous Graph Convolutional Network (ie-HGCN) to learn the representations of objects in HINs. It is designed as a hierarchical aggregation architecture, i.e., object-level aggregation first, followed by type-level aggregation. The novel architecture can automatically extract useful meta-paths for each object from all possible meta-paths (within a length limit), which brings good model interpretability. It can also reduce the computational cost by avoiding intermediate HIN transformation and neighborhood attention. We provide theoretical analysis about the proposed ie-HGCN in terms of evaluating the usefulness of all possible meta-paths, its connection to the spectral graph convolution on HINs, and its quasi-linear time complexity. Extensive experiments on three real network datasets demonstrate the superiority of ie-HGCN over the state-of-the-art methods.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
Graph Neural Networks (GNN) is an emerging field for learning on non-Euclidean data. Recently, there has been increased interest in designing GNN that scales to large graphs. Most existing methods use "graph sampling" or "layer-wise sampling" techniques to reduce training time. However, these methods still suffer from degrading performance and scalability problems when applying to graphs with billions of edges. This paper presents GBP, a scalable GNN that utilizes a localized bidirectional propagation process from both the feature vectors and the training/testing nodes. Theoretical analysis shows that GBP is the first method that achieves sub-linear time complexity for both the precomputation and the training phases. An extensive empirical study demonstrates that GBP achieves state-of-the-art performance with significantly less training/testing time. Most notably, GBP can deliver superior performance on a graph with over 60 million nodes and 1.8 billion edges in less than half an hour on a single machine.
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.
We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. Our implicit field decoder is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our decoder for representation learning and generative modeling of shapes, we demonstrate superior results for tasks such as shape autoencoding, generation, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality.
Deep learning has yielded state-of-the-art performance on many natural language processing tasks including named entity recognition (NER). However, this typically requires large amounts of labeled data. In this work, we demonstrate that the amount of labeled training data can be drastically reduced when deep learning is combined with active learning. While active learning is sample-efficient, it can be computationally expensive since it requires iterative retraining. To speed this up, we introduce a lightweight architecture for NER, viz., the CNN-CNN-LSTM model consisting of convolutional character and word encoders and a long short term memory (LSTM) tag decoder. The model achieves nearly state-of-the-art performance on standard datasets for the task while being computationally much more efficient than best performing models. We carry out incremental active learning, during the training process, and are able to nearly match state-of-the-art performance with just 25\% of the original training data.