亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper studies the causal representation learning problem when the latent causal variables are observed indirectly through an unknown linear transformation. The objectives are: (i) recovering the unknown linear transformation (up to scaling) and (ii) determining the directed acyclic graph (DAG) underlying the latent variables. Sufficient conditions for DAG recovery are established, and it is shown that a large class of non-linear models in the latent space (e.g., causal mechanisms parameterized by two-layer neural networks) satisfy these conditions. These sufficient conditions ensure that the effect of an intervention can be detected correctly from changes in the score. Capitalizing on this property, recovering a valid transformation is facilitated by the following key property: any valid transformation renders latent variables' score function to necessarily have the minimal variations across different interventional environments. This property is leveraged for perfect recovery of the latent DAG structure using only \emph{soft} interventions. For the special case of stochastic \emph{hard} interventions, with an additional hypothesis testing step, one can also uniquely recover the linear transformation up to scaling and a valid causal ordering.

相關內容

Modern computer systems are highly-configurable, with hundreds of configuration options interacting, resulting in enormous configuration space. As a result, optimizing performance goals (e.g., latency) in such systems is challenging. Worse, owing to evolving application requirements and user specifications, these systems face frequent uncertainties in their environments (e.g., hardware and workload change), making performance optimization even more challenging. Recently, transfer learning has been applied to address this problem by reusing knowledge from the offline configuration measurements of an old environment, aka, source to a new environment, aka, target. These approaches typically rely on predictive machine learning (ML) models to guide the search for finding interventions to optimize performance. However, previous empirical research showed that statistical models might perform poorly when the deployment environment changes because the independent and identically distributed (i.i.d.) assumption no longer holds. To address this issue, we propose Cameo -- a method that sidesteps these limitations by identifying invariant causal predictors under environmental changes, enabling the optimization process to operate on a reduced search space, leading to faster system performance optimization. We demonstrate significant performance improvements over the state-of-the-art optimization methods on five highly configurable computer systems, including three MLperf deep learning benchmark systems, a video analytics pipeline, and a database system, and studied the effectiveness in design explorations with different varieties and severity of environmental changes and show the scalability of our approach to colossal configuration spaces.

$l^q$-regularization has been demonstrated to be an attractive technique in machine learning and statistical modeling. It attempts to improve the generalization (prediction) capability of a machine (model) through appropriately shrinking its coefficients. The shape of a $l^q$ estimator differs in varying choices of the regularization order $q$. In particular, $l^1$ leads to the LASSO estimate, while $l^{2}$ corresponds to the smooth ridge regression. This makes the order $q$ a potential tuning parameter in applications. To facilitate the use of $l^{q}$-regularization, we intend to seek for a modeling strategy where an elaborative selection on $q$ is avoidable. In this spirit, we place our investigation within a general framework of $l^{q}$-regularized kernel learning under a sample dependent hypothesis space (SDHS). For a designated class of kernel functions, we show that all $l^{q}$ estimators for $0< q < \infty$ attain similar generalization error bounds. These estimated bounds are almost optimal in the sense that up to a logarithmic factor, the upper and lower bounds are asymptotically identical. This finding tentatively reveals that, in some modeling contexts, the choice of $q$ might not have a strong impact in terms of the generalization capability. From this perspective, $q$ can be arbitrarily specified, or specified merely by other no generalization criteria like smoothness, computational complexity, sparsity, etc..

Knowledge graph embedding (KGE) aims at learning powerful representations to benefit various artificial intelligence applications. Meanwhile, contrastive learning has been widely leveraged in graph learning as an effective mechanism to enhance the discriminative capacity of the learned representations. However, the complex structures of KG make it hard to construct appropriate contrastive pairs. Only a few attempts have integrated contrastive learning strategies with KGE. But, most of them rely on language models ( e.g., Bert) for contrastive pair construction instead of fully mining information underlying the graph structure, hindering expressive ability. Surprisingly, we find that the entities within a relational symmetrical structure are usually similar and correlated. To this end, we propose a knowledge graph contrastive learning framework based on relation-symmetrical structure, KGE-SymCL, which mines symmetrical structure information in KGs to enhance the discriminative ability of KGE models. Concretely, a plug-and-play approach is proposed by taking entities in the relation-symmetrical positions as positive pairs. Besides, a self-supervised alignment loss is designed to pull together positive pairs. Experimental results on link prediction and entity classification datasets demonstrate that our KGE-SymCL can be easily adopted to various KGE models for performance improvements. Moreover, extensive experiments show that our model could outperform other state-of-the-art baselines.

This paper investigates the case of interference, when a unit's treatment also affects other units' outcome. When interference is at work, policy evaluation mostly relies on the use of randomized experiments under cluster interference and binary treatment. Instead, we consider a non-experimental setting under continuous treatment and network interference. In particular, we define spillover effects by specifying the exposure to network treatment as a weighted average of the treatment received by units connected through physical, social or economic interactions. We provide a generalized propensity score-based estimator to estimate both direct and spillover effects of a continuous treatment. Our estimator also allows to consider asymmetric network connections characterized by heterogeneous intensities. To showcase this methodology, we investigate whether and how spillover effects shape the optimal level of policy interventions in agricultural markets. Our results show that, in this context, neglecting interference may underestimate the degree of policy effectiveness.

Causal disentanglement seeks a representation of data involving latent variables that relate to one another via a causal model. A representation is identifiable if both the latent model and the transformation from latent to observed variables are unique. In this paper, we study observed variables that are a linear transformation of a linear latent causal model. Data from interventions are necessary for identifiability: if one latent variable is missing an intervention, we show that there exist distinct models that cannot be distinguished. Conversely, we show that a single intervention on each latent variable is sufficient for identifiability. Our proof uses a generalization of the RQ decomposition of a matrix that replaces the usual orthogonal and upper triangular conditions with analogues depending on a partial order on the rows of the matrix, with partial order determined by a latent causal model. We corroborate our theoretical results with a method for causal disentanglement that accurately recovers a latent causal model.

Causal inference with spatial environmental data is often challenging due to the presence of interference: outcomes for observational units depend on some combination of local and non-local treatment. This is especially relevant when estimating the effect of power plant emissions controls on population health, as pollution exposure is dictated by (i) the location of point-source emissions, as well as (ii) the transport of pollutants across space via dynamic physical-chemical processes. In this work, we estimate the effectiveness of air quality interventions at coal-fired power plants in reducing two adverse health outcomes in Texas in 2016: pediatric asthma ED visits and Medicare all-cause mortality. We develop methods for causal inference with interference when the underlying network structure is not known with certainty and instead must be estimated from ancillary data. We offer a Bayesian, spatial mechanistic model for the interference mapping which we combine with a flexible non-parametric outcome model to marginalize estimates of causal effects over uncertainty in the structure of interference. Our analysis finds some evidence that emissions controls at upwind power plants reduce asthma ED visits and all-cause mortality, however accounting for uncertainty in the interference renders the results largely inconclusive.

We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.

Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.

Learning disentanglement aims at finding a low dimensional representation which consists of multiple explanatory and generative factors of the observational data. The framework of variational autoencoder (VAE) is commonly used to disentangle independent factors from observations. However, in real scenarios, factors with semantics are not necessarily independent. Instead, there might be an underlying causal structure which renders these factors dependent. We thus propose a new VAE based framework named CausalVAE, which includes a Causal Layer to transform independent exogenous factors into causal endogenous ones that correspond to causally related concepts in data. We further analyze the model identifiabitily, showing that the proposed model learned from observations recovers the true one up to a certain degree. Experiments are conducted on various datasets, including synthetic and real word benchmark CelebA. Results show that the causal representations learned by CausalVAE are semantically interpretable, and their causal relationship as a Directed Acyclic Graph (DAG) is identified with good accuracy. Furthermore, we demonstrate that the proposed CausalVAE model is able to generate counterfactual data through "do-operation" to the causal factors.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

北京阿比特科技有限公司