亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work we analyze how quadrature rules of different precisions and piecewise polynomial test functions of different degrees affect the convergence rate of Variational Physics Informed Neural Networks (VPINN) with respect to mesh refinement, while solving elliptic boundary-value problems. Using a Petrov-Galerkin framework relying on an inf-sup condition, we derive an a priori error estimate in the energy norm between the exact solution and a suitable high-order piecewise interpolant of a computed neural network. Numerical experiments confirm the theoretical predictions and highlight the importance of the inf-sup condition. Our results suggest, somehow counterintuitively, that for smooth solutions the best strategy to achieve a high decay rate of the error consists in choosing test functions of the lowest polynomial degree, while using quadrature formulas of suitably high precision.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 輸出 · 樣例 · 表示 · 論文 ·
2022 年 7 月 25 日

The paper is devoted to an approach to solving a problem of the efficiency of parallel computing. The theoretical basis of this approach is the concept of a $Q$-determinant. Any numerical algorithm has a $Q$-determinant. The $Q$-determinant of the algorithm has clear structure and is convenient for implementation. The $Q$-determinant consists of $Q$-terms. Their number is equal to the number of output data items. Each $Q$-term describes all possible ways to compute one of the output data items based on the input data. We also describe a software $Q$-system for studying the parallelism resource of numerical algorithms. This system enables to compute and compare the parallelism resources of numerical algorithms. The application of the $Q$-system is shown on the example of numerical algorithms with different structures of $Q$-determinants. Furthermore, we suggest a method for designing of parallel programs for numerical algorithms. This method is based on a representation of a numerical algorithm in the form of a $Q$-determinant. As a result, we can obtain the program using the parallelism resource of the algorithm completely. Such programs are called $Q$-effective. The results of this research can be applied to increase the implementation efficiency of numerical algorithms, methods, as well as algorithmic problems on parallel computing systems.

We consider a causal inference model in which individuals interact in a social network and they may not comply with the assigned treatments. Estimating causal parameters is challenging in the presence of network interference of unknown form, as each individual may be influenced by both close individuals and distant ones in complex ways. Noncompliance with treatment assignment further complicates this problem, and prior methods dealing with network spillovers but disregarding the noncompliance issue may underestimate the effect of the treatment receipt on the outcome. To estimate meaningful causal parameters, we introduce a new concept of exposure mapping, which summarizes potentially complicated spillover effects into a fixed dimensional statistic of instrumental variables. We investigate identification conditions for the intention-to-treat effect and the average causal effect for compliers, while explicitly considering the possibility of misspecification of exposure mapping. Based on our identification results, we develop nonparametric estimation procedures via inverse probability weighting. Their asymptotic properties, including consistency and asymptotic normality, are investigated using an approximate neighborhood interference framework, which is convenient for dealing with unknown forms of spillovers between individuals. For an empirical illustration, we apply our method to experimental data on the anti-conflict intervention school program.

Stochastic differential equations (SDEs) are used to describe a wide variety of complex stochastic dynamical systems. Learning the hidden physics within SDEs is crucial for unraveling fundamental understanding of these systems' stochastic and nonlinear behavior. We propose a flexible and scalable framework for training artificial neural networks to learn constitutive equations that represent hidden physics within SDEs. The proposed stochastic physics-informed neural ordinary differential equation framework (SPINODE) propagates stochasticity through the known structure of the SDE (i.e., the known physics) to yield a set of deterministic ODEs that describe the time evolution of statistical moments of the stochastic states. SPINODE then uses ODE solvers to predict moment trajectories. SPINODE learns neural network representations of the hidden physics by matching the predicted moments to those estimated from data. Recent advances in automatic differentiation and mini-batch gradient descent with adjoint sensitivity are leveraged to establish the unknown parameters of the neural networks. We demonstrate SPINODE on three benchmark in-silico case studies and analyze the framework's numerical robustness and stability. SPINODE provides a promising new direction for systematically unraveling the hidden physics of multivariate stochastic dynamical systems with multiplicative noise.

We propose FiberNet, a method to estimate \emph{in-vivo} the cardiac fiber architecture of the human atria from multiple catheter recordings of the electrical activation. Cardiac fibers play a central role in the electro-mechanical function of the heart, yet they are difficult to determine in-vivo, and hence rarely truly patient-specific in existing cardiac models. FiberNet learns the fiber arrangement by solving an inverse problem with physics-informed neural networks. The inverse problem amounts to identifying the conduction velocity tensor of a cardiac propagation model from a set of sparse activation maps. The use of multiple maps enables the simultaneous identification of all the components of the conduction velocity tensor, including the local fiber angle. We extensively test FiberNet on synthetic 2-D and 3-D examples, diffusion tensor fibers, and a patient-specific case. We show that 3 maps are sufficient to accurately capture the fibers, also in the presence of noise. With fewer maps, the role of regularization becomes prominent. Moreover, we show that the fitted model can robustly reproduce unseen activation maps. We envision that FiberNet will help the creation of patient-specific models for personalized medicine. The full code is available at //github.com/fsahli/FiberNet.

This paper proposes a new method for assessing differential item functioning (DIF) in item response theory (IRT) models. The method does not require pre-specification of anchor items, which is its main virtue. It is developed in two main steps, first by showing how DIF can be re-formulated as a problem of outlier detection in IRT-based scaling, then tackling the latter using established methods from robust statistics. The proposal is a redescending M-estimator of IRT scaling parameters that is tuned to flag items with DIF at the desired asymptotic Type I Error rate during estimation. Theoretical results guarantee that the method performs reasonably well when fewer than one-half of the items on a test exhibit DIF. Data simulations show that the proposed method compares favorably to currently available approaches, and a real data example illustrates its application in a research context where pre-specification of anchor items is infeasible. The focus of the paper is the two-parameter logistic model in two independent groups, with extensions to other settings considered in the conclusion.

In this paper, we present a numerical strategy to check the strong stability (or GKS-stability) of one-step explicit totally upwind scheme in 1D with numerical boundary conditions. The underlying approximated continuous problem is a hyperbolic partial differential equation. Our approach is based on the Uniform Kreiss-Lopatinskii Condition, using linear algebra and complex analysis to count the number of zeros of the associated determinant. The study is illustrated with the Beam-Warming scheme together with the simplified inverse Lax-Wendroff procedure at the boundary.

We propose a novel automatic parameter selection strategy for variational imaging problems under Poisson noise corruption. The selection of a suitable regularization parameter, whose value is crucial in order to achieve high quality reconstructions, is known to be a particularly hard task in low photon-count regimes. In this work, we extend the so-called residual whiteness principle originally designed for additive white noise to Poisson data. The proposed strategy relies on the study of the whiteness property of a standardized Poisson noise process. After deriving the theoretical properties that motivate our proposal, we solve the target minimization problem with a linearized version of the alternating direction method of multipliers, which is particularly suitable in presence of a general linear forward operator. Our strategy is extensively tested on image restoration and computed tomography reconstruction problems, and compared to the well-known discrepancy principle for Poisson noise proposed by Zanella at al. and with a nearly exact version of it previously proposed by the authors.

This paper focuses on waveform design for joint radar and communication systems and presents a new subset selection process to improve the communication error rate performance and global accuracy of radar sensing of the random stepped frequency permutation waveform. An optimal communication receiver based on integer programming is proposed to handle any subset of permutations followed by a more efficient sub-optimal receiver based on the Hungarian algorithm. Considering optimum maximum likelihood detection, the block error rate is analyzed under both additive white Gaussian noise and correlated Rician fading. We propose two methods to select a permutation subset with an improved block error rate and an efficient encoding scheme to map the information symbols to selected permutations under these subsets. From the radar perspective, the ambiguity function is analyzed with regards to the local and the global accuracy of target detection. Furthermore, a subset selection method to reduce the maximum sidelobe height is proposed by extending the properties of Costas arrays. Finally, the process of remapping the frequency tones to the symbol set used to generate permutations is introduced as a method to improve both the communication and radar performances of the selected permutation subset.

Physics-informed neural networks (PINNs) have shown to be an effective tool for solving forward and inverse problems of partial differential equations (PDEs). PINNs embed the PDEs into the loss of the neural network, and this PDE loss is evaluated at a set of scattered residual points. The distribution of these points are highly important to the performance of PINNs. However, in the existing studies on PINNs, only a few simple residual point sampling methods have mainly been used. Here, we present a comprehensive study of two categories of sampling: non-adaptive uniform sampling and adaptive nonuniform sampling. We consider six uniform sampling, including (1) equispaced uniform grid, (2) uniformly random sampling, (3) Latin hypercube sampling, (4) Halton sequence, (5) Hammersley sequence, and (6) Sobol sequence. We also consider a resampling strategy for uniform sampling. To improve the sampling efficiency and the accuracy of PINNs, we propose two new residual-based adaptive sampling methods: residual-based adaptive distribution (RAD) and residual-based adaptive refinement with distribution (RAR-D), which dynamically improve the distribution of residual points based on the PDE residuals during training. Hence, we have considered a total of 10 different sampling methods, including six non-adaptive uniform sampling, uniform sampling with resampling, two proposed adaptive sampling, and an existing adaptive sampling. We extensively tested the performance of these sampling methods for four forward problems and two inverse problems in many setups. Our numerical results presented in this study are summarized from more than 6000 simulations of PINNs. We show that the proposed adaptive sampling methods of RAD and RAR-D significantly improve the accuracy of PINNs with fewer residual points. The results obtained in this study can also be used as a practical guideline in choosing sampling methods.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

北京阿比特科技有限公司