亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the problem of screening in decision-making processes under uncertainty, focusing on the impact of adding an additional screening stage, commonly known as a 'gatekeeper.' While our primary analysis is rooted in the context of job market hiring, the principles and findings are broadly applicable to areas such as educational admissions, healthcare patient selection, and financial loan approvals. The gatekeeper's role is to assess applicants' suitability before significant investments are made. Our study reveals that while gatekeepers are designed to streamline the selection process by filtering out less likely candidates, they can sometimes inadvertently affect the candidates' own decision-making process. We explore the conditions under which the introduction of a gatekeeper can enhance or impede the efficiency of these processes. Additionally, we consider how adjusting gatekeeping strategies might impact the accuracy of selection decisions. Our research also extends to scenarios where gatekeeping is influenced by historical biases, particularly in competitive settings like hiring. We discover that candidates confronted with a statistically biased gatekeeping process are more likely to withdraw from applying, thereby perpetuating the previously mentioned historical biases. The study suggests that measures such as affirmative action can be effective in addressing these biases. While centered on hiring, the insights and methodologies from our study have significant implications for a wide range of fields where screening and gatekeeping are integral.

相關內容

Processing 是一門(men)開源(yuan)編(bian)程(cheng)語言和(he)與之配套的(de)(de)集成開發環境(IDE)的(de)(de)名(ming)稱。Processing 在電子(zi)藝術和(he)視覺設計社區被用(yong)(yong)來教授(shou)編(bian)程(cheng)基礎(chu),并運用(yong)(yong)于大(da)量的(de)(de)新媒體和(he)互動藝術作品中。

Diffusion models have gained attention in text processing, offering many potential advantages over traditional autoregressive models. This work explores the integration of diffusion models and Chain-of-Thought (CoT), a well-established technique to improve the reasoning ability in autoregressive language models. We propose Diffusion-of-Thought (DoT), allowing reasoning steps to diffuse over time through the diffusion process. In contrast to traditional autoregressive language models that make decisions in a left-to-right, token-by-token manner, DoT offers more flexibility in the trade-off between computation and reasoning performance. Our experimental results demonstrate the effectiveness of DoT in multi-digit multiplication and grade school math problems. Additionally, DoT showcases promising self-correction abilities and benefits from existing reasoning-enhancing techniques like self-consistency decoding. Our findings contribute to the understanding and development of reasoning capabilities in diffusion language models.

This research explores the integration of language embeddings for active learning in autonomous driving datasets, with a focus on novelty detection. Novelty arises from unexpected scenarios that autonomous vehicles struggle to navigate, necessitating higher-level reasoning abilities. Our proposed method employs language-based representations to identify novel scenes, emphasizing the dual purpose of safety takeover responses and active learning. The research presents a clustering experiment using Contrastive Language-Image Pretrained (CLIP) embeddings to organize datasets and detect novelties. We find that the proposed algorithm effectively isolates novel scenes from a collection of subsets derived from two real-world driving datasets, one vehicle-mounted and one infrastructure-mounted. From the generated clusters, we further present methods for generating textual explanations of elements which differentiate scenes classified as novel from other scenes in the data pool, presenting qualitative examples from the clustered results. Our results demonstrate the effectiveness of language-driven embeddings in identifying novel elements and generating explanations of data, and we further discuss potential applications in safe takeovers, data curation, and multi-task active learning.

Network games provide a framework to study strategic decision making processes that are governed by structured interdependencies among agents. However, existing models do not account for environments in which agents simultaneously interact over multiple networks, or when agents operate over multiple action dimensions. In this paper, we propose new models of multiplex network games to capture the different modalities of interactions among strategic agents, and multilayer network games to capture their interactions over multiple action dimensions. We explore how the properties of the constituent networks of a multiplex/multilayer network can undermine or support the existence, uniqueness, and stability of the game's Nash equilibria. Notably, we highlight that both the largest and smallest eigenvalues of the constituent networks (reflecting their connectivity and two-sidedness, respectively) are instrumental in determining the uniqueness of the multiplex/multilayer network game's equilibrium. Together, our findings shed light on the reasons for the fragility of equilibria when agents interact over networks of networks, and point out potential interventions to alleviate them.

Multimodality Representation Learning, as a technique of learning to embed information from different modalities and their correlations, has achieved remarkable success on a variety of applications, such as Visual Question Answering (VQA), Natural Language for Visual Reasoning (NLVR), and Vision Language Retrieval (VLR). Among these applications, cross-modal interaction and complementary information from different modalities are crucial for advanced models to perform any multimodal task, e.g., understand, recognize, retrieve, or generate optimally. Researchers have proposed diverse methods to address these tasks. The different variants of transformer-based architectures performed extraordinarily on multiple modalities. This survey presents the comprehensive literature on the evolution and enhancement of deep learning multimodal architectures to deal with textual, visual and audio features for diverse cross-modal and modern multimodal tasks. This study summarizes the (i) recent task-specific deep learning methodologies, (ii) the pretraining types and multimodal pretraining objectives, (iii) from state-of-the-art pretrained multimodal approaches to unifying architectures, and (iv) multimodal task categories and possible future improvements that can be devised for better multimodal learning. Moreover, we prepare a dataset section for new researchers that covers most of the benchmarks for pretraining and finetuning. Finally, major challenges, gaps, and potential research topics are explored. A constantly-updated paperlist related to our survey is maintained at //github.com/marslanm/multimodality-representation-learning.

The rapid development of deep learning has made a great progress in segmentation, one of the fundamental tasks of computer vision. However, the current segmentation algorithms mostly rely on the availability of pixel-level annotations, which are often expensive, tedious, and laborious. To alleviate this burden, the past years have witnessed an increasing attention in building label-efficient, deep-learning-based segmentation algorithms. This paper offers a comprehensive review on label-efficient segmentation methods. To this end, we first develop a taxonomy to organize these methods according to the supervision provided by different types of weak labels (including no supervision, coarse supervision, incomplete supervision and noisy supervision) and supplemented by the types of segmentation problems (including semantic segmentation, instance segmentation and panoptic segmentation). Next, we summarize the existing label-efficient segmentation methods from a unified perspective that discusses an important question: how to bridge the gap between weak supervision and dense prediction -- the current methods are mostly based on heuristic priors, such as cross-pixel similarity, cross-label constraint, cross-view consistency, cross-image relation, etc. Finally, we share our opinions about the future research directions for label-efficient deep segmentation.

Influenced by the stunning success of deep learning in computer vision and language understanding, research in recommendation has shifted to inventing new recommender models based on neural networks. In recent years, we have witnessed significant progress in developing neural recommender models, which generalize and surpass traditional recommender models owing to the strong representation power of neural networks. In this survey paper, we conduct a systematic review on neural recommender models, aiming to summarize the field to facilitate future progress. Distinct from existing surveys that categorize existing methods based on the taxonomy of deep learning techniques, we instead summarize the field from the perspective of recommendation modeling, which could be more instructive to researchers and practitioners working on recommender systems. Specifically, we divide the work into three types based on the data they used for recommendation modeling: 1) collaborative filtering models, which leverage the key source of user-item interaction data; 2) content enriched models, which additionally utilize the side information associated with users and items, like user profile and item knowledge graph; and 3) context enriched models, which account for the contextual information associated with an interaction, such as time, location, and the past interactions. After reviewing representative works for each type, we finally discuss some promising directions in this field, including benchmarking recommender systems, graph reasoning based recommendation models, and explainable and fair recommendations for social good.

Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

Most existing works in visual question answering (VQA) are dedicated to improving the accuracy of predicted answers, while disregarding the explanations. We argue that the explanation for an answer is of the same or even more importance compared with the answer itself, since it makes the question and answering process more understandable and traceable. To this end, we propose a new task of VQA-E (VQA with Explanation), where the computational models are required to generate an explanation with the predicted answer. We first construct a new dataset, and then frame the VQA-E problem in a multi-task learning architecture. Our VQA-E dataset is automatically derived from the VQA v2 dataset by intelligently exploiting the available captions. We have conducted a user study to validate the quality of explanations synthesized by our method. We quantitatively show that the additional supervision from explanations can not only produce insightful textual sentences to justify the answers, but also improve the performance of answer prediction. Our model outperforms the state-of-the-art methods by a clear margin on the VQA v2 dataset.

北京阿比特科技有限公司