亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In copula models the marginal distributions and copula function are specified separately. We treat these as two modules in a modular Bayesian inference framework, and propose conducting modified Bayesian inference by ``cutting feedback''. Cutting feedback limits the influence of potentially misspecified modules in posterior inference. We consider two types of cuts. The first limits the influence of a misspecified copula on inference for the marginals, which is a Bayesian analogue of the popular Inference for Margins (IFM) estimator. The second limits the influence of misspecified marginals on inference for the copula parameters by using a rank likelihood to define the cut model. We establish that if only one of the modules is misspecified, then the appropriate cut posterior gives accurate uncertainty quantification asymptotically for the parameters in the other module. Computation of the cut posteriors is difficult, and new variational inference methods to do so are proposed. The efficacy of the new methodology is demonstrated using both simulated data and a substantive multivariate time series application from macroeconomic forecasting. In the latter, cutting feedback from misspecified marginals to a 1096 dimension copula improves posterior inference and predictive accuracy greatly, compared to conventional Bayesian inference.

相關內容

Solving inverse problems requires knowledge of the forward operator, but accurate models can be computationally expensive and hence cheaper variants are desired that do not compromise reconstruction quality. This chapter reviews reconstruction methods in inverse problems with learned forward operators that follow two different paradigms. The first one is completely agnostic to the forward operator and learns its restriction to the subspace spanned by the training data. The framework of regularisation by projection is then used to find a reconstruction. The second one uses a simplified model of the physics of the measurement process and only relies on the training data to learn a model correction. We present the theory of these two approaches and compare them numerically. A common theme emerges: both methods require, or at least benefit from, training data not only for the forward operator, but also for its adjoint.

To ensure reliable object detection in autonomous systems, the detector must be able to adapt to changes in appearance caused by environmental factors such as time of day, weather, and seasons. Continually adapting the detector to incorporate these changes is a promising solution, but it can be computationally costly. Our proposed approach is to selectively adapt the detector only when necessary, using new data that does not have the same distribution as the current training data. To this end, we investigate three popular metrics for domain gap evaluation and find that there is a correlation between the domain gap and detection accuracy. Therefore, we apply the domain gap as a criterion to decide when to adapt the detector. Our experiments show that our approach has the potential to improve the efficiency of the detector's operation in real-world scenarios, where environmental conditions change in a cyclical manner, without sacrificing the overall performance of the detector. Our code is publicly available at //github.com/dadung/DGE-CDA.

Spatial statistical models are commonly used in geographical scenarios to ensure spatial variation is captured effectively. However, spatial models and cluster algorithms can be complicated and expensive. This paper pursues three main objectives. First, it introduces covariate effect clustering by integrating a Bayesian Geographically Weighted Regression (BGWR) with a Gaussian mixture model and the Dirichlet process mixture model. Second, this paper examines situations in which a particular covariate holds significant importance in one region but not in another in the Bayesian framework. Lastly, it addresses computational challenges present in existing BGWR, leading to notable enhancements in Markov chain Monte Carlo estimation suitable for large spatial datasets. The efficacy of the proposed method is demonstrated using simulated data and is further validated in a case study examining children's development domains in Queensland, Australia, using data provided by Children's Health Queensland and Australia's Early Development Census.

QR decomposition is an essential operation for solving linear equations and obtaining least-squares solutions. In high-performance computing systems, large-scale parallel QR decomposition often faces node faults. We address this issue by proposing a fault-tolerant algorithm that incorporates `coded computing' into the parallel Gram-Schmidt method, commonly used for QR decomposition. Coded computing introduces error-correcting codes into computational processes to enhance resilience against intermediate failures. While traditional coding strategies cannot preserve the orthogonality of $Q$, recent work has proven a post-orthogonalization condition that allows low-cost restoration of the degraded orthogonality. In this paper, we construct a checksum-generator matrix for multiple-node failures that satisfies the post-orthogonalization condition and prove that our code satisfies the maximum-distance separable (MDS) property with high probability. Furthermore, we consider in-node checksum storage setting where checksums are stored in original nodes. We obtain the minimal number of checksums required to be resilient to any $f$ failures under the in-node checksum storage, and also propose an in-node systematic MDS coding strategy that achieves the lower bound. Extensive experiments validate our theories and showcase the negligible overhead of our coded computing framework for fault-tolerant QR decomposition.

We present experimental and theoretical results on a method that applies a numerical solver iteratively to solve several non-negative quadratic programming problems in geometric optimization. The method gains efficiency by exploiting the potential sparsity of the intermediate solutions. We implemented the method to call quadprog of MATLAB iteratively. In comparison with a single call of quadprog, we obtain a 10-fold speedup on two proximity graph problems in $\mathbb{R}^d$ on some public data sets, a 10-fold speedup on the minimum enclosing ball problem on random points in a unit cube in $\mathbb{R}^d$, and a 5-fold speedup on the polytope distance problem on random points from a cube in $\mathbb{R}^d$ when the input size is significantly larger than the dimension; we also obtain a 2-fold or more speedup on deblurring some gray-scale space and thermal images via non-negative least square. We compare with two minimum enclosing ball software by G\"{a}rtner and Fischer et al.; for 1000 nearly cospherical points or random points in a unit cube, the iterative method overtakes the software by G\"{a}rtner at 20 dimensions and the software by Fischer et al. at 170 dimensions. In the image deblurring experiments, the iterative method compares favorably with other software that can solve non-negative least square, including FISTA with backtracking, SBB, FNNLS, and lsqnonneg of MATLAB. We analyze theoretically the number of iterations taken by the iterative scheme to reduce the gap between the current solution value and the optimum by a factor $e$. Under certain assumptions, we prove a bound proportional to the square root of the number of variables.

Categorical semantics of type theories are often characterized as structure-preserving functors. This is because in category theory both the syntax and the domain of interpretation are uniformly treated as structured categories, so that we can express interpretations as structure-preserving functors between them. This mathematical characterization of semantics makes it convenient to manipulate and to reason about relationships between interpretations. Motivated by this success of functorial semantics, we address the question of finding a functorial analogue in abstract interpretation, a general framework for comparing semantics, so that we can bring similar benefits of functorial semantics to semantic abstractions used in abstract interpretation. Major differences concern the notion of interpretation that is being considered. Indeed, conventional semantics are value-based whereas abstract interpretation typically deals with more complex properties. In this paper, we propose a functorial approach to abstract interpretation and study associated fundamental concepts therein. In our approach, interpretations are expressed as oplax functors in the category of posets, and abstraction relations between interpretations are expressed as lax natural transformations representing concretizations. We present examples of these formal concepts from monadic semantics of programming languages and discuss soundness.

Most modern computing tasks are constrained to having digital electronic input and output data. Due to these constraints imposed by the user, any analog computing accelerator must perform an analog-to-digital conversion on its input data and a subsequent digital-to-analog conversion on its output data. This places performance limits on analog computing accelerator hardware. To avoid this, analog hardware must replace the full functionality of traditional digital electronic computer hardware. This is not currently possible for optical computing accelerators due to limitations in gain, input-output isolation, and information storage in current optical hardware. In our case study we profiled 27 benchmarks on an analog optical Fourier transform and convolution accelerator. We estimate that an ideal optical accelerator that accelerates Fourier transforms and convolutions can produce an average speedup of 9.4 times, and a median speedup of 1.9 times for the set of benchmarks. The case study shows that the optical Fourier transform and convolution accelerator only produces significant speedup for applications consisting exclusively of Fourier transforms (45.3 times) and convolutions (159.4 times).

Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.

Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limits possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAug improves performance across GNN architectures and datasets.

北京阿比特科技有限公司