The reduced-rank vector autoregressive (VAR) model can be interpreted as a supervised factor model, where two factor modelings are simultaneously applied to response and predictor spaces. This article introduces a new model, called vector autoregression with common response and predictor factors, to explore further the common structure between the response and predictors in the VAR framework. The new model can provide better physical interpretations and improve estimation efficiency. In conjunction with the tensor operation, the model can easily be extended to any finite-order VAR model. A regularization-based method is considered for the high-dimensional estimation with the gradient descent algorithm, and its computational and statistical convergence guarantees are established. For data with pervasive cross-sectional dependence, a transformation for responses is developed to alleviate the diverging eigenvalue effect. Moreover, we consider additional sparsity structure in factor loading for the case of ultra-high dimension. Simulation experiments confirm our theoretical findings and a macroeconomic application showcases the appealing properties of the proposed model in structural analysis and forecasting.
Multimedia recommendation has received much attention in recent years. It models user preferences based on both behavior information and item multimodal information. Though current GCN-based methods achieve notable success, they suffer from two limitations: (1) Modality noise contamination to the item representations. Existing methods often mix modality features and behavior features in a single view (e.g., user-item view) for propagation, the noise in the modality features may be amplified and coupled with behavior features. In the end, it leads to poor feature discriminability; (2) Incomplete user preference modeling caused by equal treatment of modality features. Users often exhibit distinct modality preferences when purchasing different items. Equally fusing each modality feature ignores the relative importance among different modalities, leading to the suboptimal user preference modeling. To tackle the above issues, we propose a novel Multi-View Graph Convolutional Network for the multimedia recommendation. Specifically, to avoid modality noise contamination, the modality features are first purified with the aid of item behavior information. Then, the purified modality features of items and behavior features are enriched in separate views, including the user-item view and the item-item view. In this way, the distinguishability of features is enhanced. Meanwhile, a behavior-aware fuser is designed to comprehensively model user preferences by adaptively learning the relative importance of different modality features. Furthermore, we equip the fuser with a self-supervised auxiliary task. This task is expected to maximize the mutual information between the fused multimodal features and behavior features, so as to capture complementary and supplementary preference information simultaneously. Extensive experiments on three public datasets demonstrate the effectiveness of our methods.
Spiking Neural Networks (SNNs) are promising energy-efficient models for neuromorphic computing. For training the non-differentiable SNN models, the backpropagation through time (BPTT) with surrogate gradients (SG) method has achieved high performance. However, this method suffers from considerable memory cost and training time during training. In this paper, we propose the Spatial Learning Through Time (SLTT) method that can achieve high performance while greatly improving training efficiency compared with BPTT. First, we show that the backpropagation of SNNs through the temporal domain contributes just a little to the final calculated gradients. Thus, we propose to ignore the unimportant routes in the computational graph during backpropagation. The proposed method reduces the number of scalar multiplications and achieves a small memory occupation that is independent of the total time steps. Furthermore, we propose a variant of SLTT, called SLTT-K, that allows backpropagation only at K time steps, then the required number of scalar multiplications is further reduced and is independent of the total time steps. Experiments on both static and neuromorphic datasets demonstrate superior training efficiency and performance of our SLTT. In particular, our method achieves state-of-the-art accuracy on ImageNet, while the memory cost and training time are reduced by more than 70% and 50%, respectively, compared with BPTT.
Large pre-trained multimodal models have demonstrated significant success in a range of downstream tasks, including image captioning, image-text retrieval, visual question answering (VQA), etc. However, many of these methods rely on image-text pairs collected from the web as pre-training data and unfortunately overlook the need for fine-grained feature alignment between vision and language modalities, which requires detailed understanding of images and language expressions. While integrating VQA and dense captioning (DC) into pre-training can address this issue, acquiring image-question-answer as well as image-location-caption triplets is challenging and time-consuming. Additionally, publicly available datasets for VQA and dense captioning are typically limited in scale due to manual data collection and labeling efforts. In this paper, we propose a novel method called Joint QA and DC GEneration (JADE), which utilizes a pre-trained multimodal model and easily-crawled image-text pairs to automatically generate and filter large-scale VQA and dense captioning datasets. We apply this method to the Conceptual Caption (CC3M) dataset to generate a new dataset called CC3M-QA-DC. Experiments show that when used for pre-training in a multi-task manner, CC3M-QA-DC can improve the performance with various backbones on various downstream tasks. Furthermore, our generated CC3M-QA-DC can be combined with larger image-text datasets (e.g., CC15M) and achieve competitive results compared with models using much more data. Code and dataset are available at //github.com/johncaged/OPT_Questioner.
We propose TF-GridNet for speech separation. The model is a novel deep neural network (DNN) integrating full- and sub-band modeling in the time-frequency (T-F) domain. It stacks several blocks, each consisting of an intra-frame full-band module, a sub-band temporal module, and a cross-frame self-attention module. It is trained to perform complex spectral mapping, where the real and imaginary (RI) components of input signals are stacked as features to predict target RI components. We first evaluate it on monaural anechoic speaker separation. Without using data augmentation and dynamic mixing, it obtains a state-of-the-art 23.5 dB improvement in scale-invariant signal-to-distortion ratio (SI-SDR) on WSJ0-2mix, a standard dataset for two-speaker separation. To show its robustness to noise and reverberation, we evaluate it on monaural reverberant speaker separation using the SMS-WSJ dataset and on noisy-reverberant speaker separation using WHAMR!, and obtain state-of-the-art performance on both datasets. We then extend TF-GridNet to multi-microphone conditions through multi-microphone complex spectral mapping, and integrate it into a two-DNN system with a beamformer in between (named as MISO-BF-MISO in earlier studies), where the beamformer proposed in this paper is a novel multi-frame Wiener filter computed based on the outputs of the first DNN. State-of-the-art performance is obtained on the multi-channel tasks of SMS-WSJ and WHAMR!. Besides speaker separation, we apply the proposed algorithms to speech dereverberation and noisy-reverberant speech enhancement. State-of-the-art performance is obtained on a dereverberation dataset and on the dataset of the recent L3DAS22 multi-channel speech enhancement challenge.
Deep Neural Network (DNN) has achieved great success on datasets of closed class set. However, new classes, like new categories of social media topics, are continuously added to the real world, making it necessary to incrementally learn. This is hard for DNN because it tends to focus on fitting to new classes while ignoring old classes, a phenomenon known as catastrophic forgetting. State-of-the-art methods rely on knowledge distillation and data replay techniques but still have limitations. In this work, we analyze the causes of catastrophic forgetting in class incremental learning, which owes to three factors: representation drift, representation confusion, and classifier distortion. Based on this view, we propose a two-stage learning framework with a fixed encoder and an incrementally updated prototype classifier. The encoder is trained with self-supervised learning to generate a feature space with high intrinsic dimensionality, thus improving its transferability and generality. The classifier incrementally learns new prototypes while retaining the prototypes of previously learned data, which is crucial in preserving the decision boundary.Our method does not rely on preserved samples of old classes, is thus a non-exemplar based CIL method. Experiments on public datasets show that our method can significantly outperform state-of-the-art exemplar-based methods when they reserved 5 examplers per class, under the incremental setting of 10 phases, by 18.24% on CIFAR-100 and 9.37% on ImageNet100.
Unsupervised multiplex graph learning (UMGL) has been shown to achieve significant effectiveness for different downstream tasks by exploring both complementary information and consistent information among multiple graphs. However, previous methods usually overlook the issues in practical applications, i.e., the out-of-sample issue and the noise issue. To address the above issues, in this paper, we propose an effective and efficient UMGL method to explore both complementary and consistent information. To do this, our method employs multiple MLP encoders rather than graph convolutional network (GCN) to conduct representation learning with two constraints, i.e., preserving the local graph structure among nodes to handle the out-of-sample issue, and maximizing the correlation of multiple node representations to handle the noise issue. Comprehensive experiments demonstrate that our proposed method achieves superior effectiveness and efficiency over the comparison methods and effectively tackles those two issues. Code is available at //github.com/LarryUESTC/CoCoMG.
The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.
Conventional methods for object detection typically require a substantial amount of training data and preparing such high-quality training data is very labor-intensive. In this paper, we propose a novel few-shot object detection network that aims at detecting objects of unseen categories with only a few annotated examples. Central to our method are our Attention-RPN, Multi-Relation Detector and Contrastive Training strategy, which exploit the similarity between the few shot support set and query set to detect novel objects while suppressing false detection in the background. To train our network, we contribute a new dataset that contains 1000 categories of various objects with high-quality annotations. To the best of our knowledge, this is one of the first datasets specifically designed for few-shot object detection. Once our few-shot network is trained, it can detect objects of unseen categories without further training or fine-tuning. Our method is general and has a wide range of potential applications. We produce a new state-of-the-art performance on different datasets in the few-shot setting. The dataset link is //github.com/fanq15/Few-Shot-Object-Detection-Dataset.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.
In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.