Plug-and-Play methods constitute a class of iterative algorithms for imaging problems where regularization is performed by an off-the-shelf denoiser. Although Plug-and-Play methods can lead to tremendous visual performance for various image problems, the few existing convergence guarantees are based on unrealistic (or suboptimal) hypotheses on the denoiser, or limited to strongly convex data terms. In this work, we propose a new type of Plug-and-Play methods, based on half-quadratic splitting, for which the denoiser is realized as a gradient descent step on a functional parameterized by a deep neural network. Exploiting convergence results for proximal gradient descent algorithms in the non-convex setting, we show that the proposed Plug-and-Play algorithm is a convergent iterative scheme that targets stationary points of an explicit global functional. Besides, experiments show that it is possible to learn such a deep denoiser while not compromising the performance in comparison to other state-of-the-art deep denoisers used in Plug-and-Play schemes. We apply our proximal gradient algorithm to various ill-posed inverse problems, e.g. deblurring, super-resolution and inpainting. For all these applications, numerical results empirically confirm the convergence results. Experiments also show that this new algorithm reaches state-of-the-art performance, both quantitatively and qualitatively.
Covariance estimation for matrix-valued data has received an increasing interest in applications. Unlike previous works that rely heavily on matrix normal distribution assumption and the requirement of fixed matrix size, we propose a class of distribution-free regularized covariance estimation methods for high-dimensional matrix data under a separability condition and a bandable covariance structure. Under these conditions, the original covariance matrix is decomposed into a Kronecker product of two bandable small covariance matrices representing the variability over row and column directions. We formulate a unified framework for estimating bandable covariance, and introduce an efficient algorithm based on rank one unconstrained Kronecker product approximation. The convergence rates of the proposed estimators are established, and the derived minimax lower bound shows our proposed estimator is rate-optimal under certain divergence regimes of matrix size. We further introduce a class of robust covariance estimators and provide theoretical guarantees to deal with heavy-tailed data. We demonstrate the superior finite-sample performance of our methods using simulations and real applications from a gridded temperature anomalies dataset and a S&P 500 stock data analysis.
Stochastic Gradient Descent (SGD) is a central tool in machine learning. We prove that SGD converges to zero loss, even with a fixed (non-vanishing) learning rate - in the special case of homogeneous linear classifiers with smooth monotone loss functions, optimized on linearly separable data. Previous works assumed either a vanishing learning rate, iterate averaging, or loss assumptions that do not hold for monotone loss functions used for classification, such as the logistic loss. We prove our result on a fixed dataset, both for sampling with or without replacement. Furthermore, for logistic loss (and similar exponentially-tailed losses), we prove that with SGD the weight vector converges in direction to the $L_2$ max margin vector as $O(1/\log(t))$ for almost all separable datasets, and the loss converges as $O(1/t)$ - similarly to gradient descent. Lastly, we examine the case of a fixed learning rate proportional to the minibatch size. We prove that in this case, the asymptotic convergence rate of SGD (with replacement) does not depend on the minibatch size in terms of epochs, if the support vectors span the data. These results may suggest an explanation to similar behaviors observed in deep networks, when trained with SGD.
We propose a stochastic conditional gradient method (CGM) for minimizing convex finite-sum objectives formed as a sum of smooth and non-smooth terms. Existing CGM variants for this template either suffer from slow convergence rates, or require carefully increasing the batch size over the course of the algorithm's execution, which leads to computing full gradients. In contrast, the proposed method, equipped with a stochastic average gradient (SAG) estimator, requires only one sample per iteration. Nevertheless, it guarantees fast convergence rates on par with more sophisticated variance reduction techniques. In applications we put special emphasis on problems with a large number of separable constraints. Such problems are prevalent among semidefinite programming (SDP) formulations arising in machine learning and theoretical computer science. We provide numerical experiments on matrix completion, unsupervised clustering, and sparsest-cut SDPs.
Locating 3D objects from a single RGB image via Perspective-n-Points (PnP) is a long-standing problem in computer vision. Driven by end-to-end deep learning, recent studies suggest interpreting PnP as a differentiable layer, so that 2D-3D point correspondences can be partly learned by backpropagating the gradient w.r.t. object pose. Yet, learning the entire set of unrestricted 2D-3D points from scratch fails to converge with existing approaches, since the deterministic pose is inherently non-differentiable. In this paper, we propose the EPro-PnP, a probabilistic PnP layer for general end-to-end pose estimation, which outputs a distribution of pose on the SE(3) manifold, essentially bringing categorical Softmax to the continuous domain. The 2D-3D coordinates and corresponding weights are treated as intermediate variables learned by minimizing the KL divergence between the predicted and target pose distribution. The underlying principle unifies the existing approaches and resembles the attention mechanism. EPro-PnP significantly outperforms competitive baselines, closing the gap between PnP-based method and the task-specific leaders on the LineMOD 6DoF pose estimation and nuScenes 3D object detection benchmarks.
Multigrid is a powerful solver for large-scale linear systems arising from discretized partial differential equations. The convergence theory of multigrid methods for symmetric positive definite problems has been well developed over the past decades, while, for nonsymmetric problems, such theory is still not mature. As a foundation for multigrid analysis, two-grid convergence theory plays an important role in motivating multigrid algorithms. Regarding two-grid methods for nonsymmetric problems, most previous works focus on the spectral radius of iteration matrix or rely on convergence measures that are typically difficult to compute in practice. Moreover, the existing results are confined to two-grid methods with exact solution of the coarse-grid system. In this paper, we analyze the convergence of a two-grid method for nonsymmetric positive definite problems (e.g., linear systems arising from the discretizations of convection-diffusion equations). In the case of exact coarse solver, we establish an elegant identity for characterizing two-grid convergence factor, which is measured by a smoother-induced norm. The identity can be conveniently used to derive a class of optimal restriction operators and analyze how the convergence factor is influenced by restriction. More generally, we present some convergence estimates for an inexact variant of the two-grid method, in which both linear and nonlinear coarse solvers are considered.
Momentum methods, such as heavy ball method~(HB) and Nesterov's accelerated gradient method~(NAG), have been widely used in training neural networks by incorporating the history of gradients into the current updating process. In practice, they often provide improved performance over (stochastic) gradient descent~(GD) with faster convergence. Despite these empirical successes, theoretical understandings of their accelerated convergence rates are still lacking. Recently, some attempts have been made by analyzing the trajectories of gradient-based methods in an over-parameterized regime, where the number of the parameters is significantly larger than the number of the training instances. However, the majority of existing theoretical work is mainly concerned with GD and the established convergence result of NAG is inferior to HB and GD, which fails to explain the practical success of NAG. In this paper, we take a step towards closing this gap by analyzing NAG in training a randomly initialized over-parameterized two-layer fully connected neural network with ReLU activation. Despite the fact that the objective function is non-convex and non-smooth, we show that NAG converges to a global minimum at a non-asymptotic linear rate $(1-\Theta(1/\sqrt{\kappa}))^t$, where $\kappa > 1$ is the condition number of a gram matrix and $t$ is the number of the iterations. Compared to the convergence rate $(1-\Theta(1/{\kappa}))^t$ of GD, our result provides theoretical guarantees for the acceleration of NAG in neural network training. Furthermore, our findings suggest that NAG and HB have similar convergence rate. Finally, we conduct extensive experiments on six benchmark datasets to validate the correctness of our theoretical results.
One of the most important problems in system identification and statistics is how to estimate the unknown parameters of a given model. Optimization methods and specialized procedures, such as Empirical Minimization (EM) can be used in case the likelihood function can be computed. For situations where one can only simulate from a parametric model, but the likelihood is difficult or impossible to evaluate, a technique known as the Two-Stage (TS) Approach can be applied to obtain reliable parametric estimates. Unfortunately, there is currently a lack of theoretical justification for TS. In this paper, we propose a statistical decision-theoretical derivation of TS, which leads to Bayesian and Minimax estimators. We also show how to apply the TS approach on models for independent and identically distributed samples, by computing quantiles of the data as a first step, and using a linear function as the second stage. The proposed method is illustrated via numerical simulations.
A new numerical method for mean field games (MFGs) is proposed. The target MFGs are derived from optimal control problems for multidimensional systems with advection terms, which are difficult to solve numerically with existing methods. For such MFGs, linearization using the Cole-Hopf transformation and iterative computation using fictitious play are introduced. This leads to an implementation-friendly algorithm that iteratively solves explicit schemes. The convergence properties of the proposed scheme are mathematically proved by tracking the error of the variable through iterations. Numerical calculations show that the proposed method works stably for both one- and two-dimensional control problems.
We prove linear convergence of gradient descent to a global minimum for the training of deep residual networks with constant layer width and smooth activation function. We further show that the trained weights, as a function of the layer index, admits a scaling limit which is H\"older continuous as the depth of the network tends to infinity. The proofs are based on non-asymptotic estimates of the loss function and of norms of the network weights along the gradient descent path. We illustrate the relevance of our theoretical results to practical settings using detailed numerical experiments on supervised learning problems.
Video anomaly detection under weak labels is formulated as a typical multiple-instance learning problem in previous works. In this paper, we provide a new perspective, i.e., a supervised learning task under noisy labels. In such a viewpoint, as long as cleaning away label noise, we can directly apply fully supervised action classifiers to weakly supervised anomaly detection, and take maximum advantage of these well-developed classifiers. For this purpose, we devise a graph convolutional network to correct noisy labels. Based upon feature similarity and temporal consistency, our network propagates supervisory signals from high-confidence snippets to low-confidence ones. In this manner, the network is capable of providing cleaned supervision for action classifiers. During the test phase, we only need to obtain snippet-wise predictions from the action classifier without any extra post-processing. Extensive experiments on 3 datasets at different scales with 2 types of action classifiers demonstrate the efficacy of our method. Remarkably, we obtain the frame-level AUC score of 82.12% on UCF-Crime.