亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

From the social sciences to machine learning, it has been well documented that metrics to be optimized are not always aligned with social welfare. In healthcare, Dranove et al. [12] showed that publishing surgery mortality metrics actually harmed the welfare of sicker patients by increasing provider selection behavior. Using a principal-agent model, we directly study the incentive misalignments that arise from such average treated outcome metrics, and show that the incentives driving treatment decisions would align with maximizing total patient welfare if the metrics (i) accounted for counterfactual untreated outcomes and (ii) considered total welfare instead of average welfare among treated patients. Operationalizing this, we show how counterfactual metrics can be modified to satisfy desirable properties when used for ranking. Extending to realistic settings when the providers observe more about patients than the regulatory agencies do, we bound the decay in performance by the degree of information asymmetry between the principal and the agent. In doing so, our model connects principal-agent information asymmetry with unobserved heterogeneity in causal inference.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · state-of-the-art · 約束優化 · Performer · 正則化項 ·
2023 年 7 月 12 日

The main challenge of offline reinforcement learning, where data is limited, arises from a sequence of counterfactual reasoning dilemmas within the realm of potential actions: What if we were to choose a different course of action? These circumstances frequently give rise to extrapolation errors, which tend to accumulate exponentially with the problem horizon. Hence, it becomes crucial to acknowledge that not all decision steps are equally important to the final outcome, and to budget the number of counterfactual decisions a policy make in order to control the extrapolation. Contrary to existing approaches that use regularization on either the policy or value function, we propose an approach to explicitly bound the amount of out-of-distribution actions during training. Specifically, our method utilizes dynamic programming to decide where to extrapolate and where not to, with an upper bound on the decisions different from behavior policy. It balances between the potential for improvement from taking out-of-distribution actions and the risk of making errors due to extrapolation. Theoretically, we justify our method by the constrained optimality of the fixed point solution to our $Q$ updating rules. Empirically, we show that the overall performance of our method is better than the state-of-the-art offline RL methods on tasks in the widely-used D4RL benchmarks.

The feedback that users provide through their choices (e.g., clicks, purchases) is one of the most common types of data readily available for training search and recommendation algorithms. However, myopically training systems based on choice data may only improve short-term engagement, but not the long-term sustainability of the platform and the long-term benefits to its users, content providers, and other stakeholders. In this paper, we thus develop a new framework in which decision makers (e.g., platform operators, regulators, users) can express long-term goals for the behavior of the platform (e.g., fairness, revenue distribution, legal requirements). These goals take the form of exposure or impact targets that go well beyond individual sessions, and we provide new control-based algorithms to achieve these goals. In particular, the controllers are designed to achieve the stated long-term goals with minimum impact on short-term engagement. Beyond the principled theoretical derivation of the controllers, we evaluate the algorithms on both synthetic and real-world data. While all controllers perform well, we find that they provide interesting trade-offs in efficiency, robustness, and the ability to plan ahead.

Fairness-aware recommendation eliminates discrimination issues to build trustworthy recommendation systems.Explaining the causes of unfair recommendations is critical, as it promotes fairness diagnostics, and thus secures users' trust in recommendation models. Existing fairness explanation methods suffer high computation burdens due to the large-scale search space and the greedy nature of the explanation search process. Besides, they perform score-based optimizations with continuous values, which are not applicable to discrete attributes such as gender and race. In this work, we adopt the novel paradigm of counterfactual explanation from causal inference to explore how minimal alterations in explanations change model fairness, to abandon the greedy search for explanations. We use real-world attributes from Heterogeneous Information Networks (HINs) to empower counterfactual reasoning on discrete attributes. We propose a novel Counterfactual Explanation for Fairness (CFairER) that generates attribute-level counterfactual explanations from HINs for recommendation fairness. Our CFairER conducts off-policy reinforcement learning to seek high-quality counterfactual explanations, with an attentive action pruning reducing the search space of candidate counterfactuals. The counterfactual explanations help to provide rational and proximate explanations for model fairness, while the attentive action pruning narrows the search space of attributes. Extensive experiments demonstrate our proposed model can generate faithful explanations while maintaining favorable recommendation performance.

The past decade has witnessed the flourishing of a new profession as media content creators, who rely on revenue streams from online content recommendation platforms. The reward mechanism employed by these platforms creates a competitive environment among creators which affect their production choices and, consequently, content distribution and system welfare. It is thus crucial to design the platform's reward mechanism in order to steer the creators' competition towards a desirable welfare outcome in the long run. This work makes two major contributions in this regard: first, we uncover a fundamental limit about a class of widely adopted mechanisms, coined Merit-based Monotone Mechanisms, by showing that they inevitably lead to a constant fraction loss of the optimal welfare. To circumvent this limitation, we introduce Backward Rewarding Mechanisms (BRMs) and show that the competition game resultant from BRMs possesses a potential game structure. BRMs thus naturally induce strategic creators' collective behaviors towards optimizing the potential function, which can be designed to match any given welfare metric. In addition, the BRM class can be parameterized to allow the platform to directly optimize welfare within the feasible mechanism space even when the welfare metric is not explicitly defined.

Contemporary scientific research is a distributed, collaborative endeavor, carried out by teams of researchers, regulatory institutions, funding agencies, commercial partners, and scientific bodies, all interacting with each other and facing different incentives. To maintain scientific rigor, statistical methods should acknowledge this state of affairs. To this end, we study hypothesis testing when there is an agent (e.g., a researcher or a pharmaceutical company) with a private prior about an unknown parameter and a principal (e.g., a policymaker or regulator) who wishes to make decisions based on the parameter value. The agent chooses whether to run a statistical trial based on their private prior and then the result of the trial is used by the principal to reach a decision. We show how the principal can conduct statistical inference that leverages the information that is revealed by an agent's strategic behavior -- their choice to run a trial or not. In particular, we show how the principal can design a policy to elucidate partial information about the agent's private prior beliefs and use this to control the posterior probability of the null. One implication is a simple guideline for the choice of significance threshold in clinical trials: the type-I error level should be set to be strictly less than the cost of the trial divided by the firm's profit if the trial is successful.

Understanding and longitudinally tracking the social context of people help in understanding their behavior and mental well-being better. Hence, instead of burdensome questionnaires, some studies used passive smartphone sensors to infer social context with machine learning models. However, the few studies that have been done up to date have focused on unique, situated contexts (i.e., when eating or drinking) in one or two countries, hence limiting the understanding of the inference in terms of generalization to (i) everyday life occasions and (ii) different countries. In this paper, we used a novel, large-scale, and multimodal smartphone sensing dataset with over 216K self-reports collected from over 580 participants in five countries (Mongolia, Italy, Denmark, UK, Paraguay), first to understand whether social context inference (i.e., alone or not) is feasible with sensor data, and then, to know how behavioral and country-level diversity affects the inference. We found that (i) sensor features from modalities such as activity, location, app usage, Bluetooth, and WiFi could be informative of social context; (ii) partially personalized multi-country models (trained and tested with data from all countries) and country-specific models (trained and tested within countries) achieved similar accuracies in the range of 80%-90%; and (iii) models do not generalize well to unseen countries regardless of geographic similarity.

Car pooling is expected to significantly help in reducing traffic congestion and pollution in cities by enabling drivers to share their cars with travellers with similar itineraries and time schedules. A number of car pooling matching services have been designed in order to efficiently find successful ride matches in a given pool of drivers and potential passengers. However, it is now recognised that many non-monetary aspects and social considerations, besides simple mobility needs, may influence the individual willingness of sharing a ride, which are difficult to predict. To address this problem, in this study we propose GoTogether, a recommender system for car pooling services that leverages on learning-to-rank techniques to automatically derive the personalised ranking model of each user from the history of her choices (i.e., the type of accepted or rejected shared rides). Then, GoTogether builds the list of recommended rides in order to maximise the success rate of the offered matches. To test the performance of our scheme we use real data from Twitter and Foursquare sources in order to generate a dataset of plausible mobility patterns and ride requests in a metropolitan area. The results show that the proposed solution quickly obtain an accurate prediction of the personalised user's choice model both in static and dynamic conditions.

Counterspeech offers direct rebuttals to hateful speech by challenging perpetrators of hate and showing support to targets of abuse. It provides a promising alternative to more contentious measures, such as content moderation and deplatforming, by contributing a greater amount of positive online speech rather than attempting to mitigate harmful content through removal. Advances in the development of large language models mean that the process of producing counterspeech could be made more efficient by automating its generation, which would enable large-scale online campaigns. However, we currently lack a systematic understanding of several important factors relating to the efficacy of counterspeech for hate mitigation, such as which types of counterspeech are most effective, what are the optimal conditions for implementation, and which specific effects of hate it can best ameliorate. This paper aims to fill this gap by systematically reviewing counterspeech research in the social sciences and comparing methodologies and findings with computer science efforts in automatic counterspeech generation. By taking this multi-disciplinary view, we identify promising future directions in both fields.

In 1954, Alston S. Householder published Principles of Numerical Analysis, one of the first modern treatments on matrix decomposition that favored a (block) LU decomposition-the factorization of a matrix into the product of lower and upper triangular matrices. And now, matrix decomposition has become a core technology in machine learning, largely due to the development of the back propagation algorithm in fitting a neural network. The sole aim of this survey is to give a self-contained introduction to concepts and mathematical tools in numerical linear algebra and matrix analysis in order to seamlessly introduce matrix decomposition techniques and their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning matrix decomposition and given the paucity of scope to present this discussion, e.g., the separated analysis of the Euclidean space, Hermitian space, Hilbert space, and things in the complex domain. We refer the reader to literature in the field of linear algebra for a more detailed introduction to the related fields.

Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.

北京阿比特科技有限公司