亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Periodic autoregressive (PAR) time series with finite variance is considered as one of the most common models of second-order cyclostationary processes. However, in the real applications, the signals with periodic characteristics may be disturbed by additional noise related to measurement device disturbances or to other external sources. Thus, the known estimation techniques dedicated for PAR models may be inefficient for such cases. When the variance of the additive noise is relatively small, it can be ignored and the classical estimation techniques can be applied. However, for extreme cases, the additive noise can have a significant influence on the estimation results. In this paper, we propose four estimation techniques for the noise-corrupted PAR models with finite variance distributions. The methodology is based on Yule-Walker equations utilizing the autocovariance function. It can be used for any type of the finite variance additive noise. The presented simulation study clearly indicates the efficiency of the proposed techniques, also for extreme case, when the additive noise is a sum of the Gaussian additive noise and additive outliers. The proposed estimation techniques are also applied for testing if the data corresponds to noise-corrupted PAR model. This issue is strongly related to the identification of informative component in the data in case when the model is disturbed by additive non-informative noise. The power of the test is studied for simulated data. Finally, the testing procedure is applied for two real time series describing particulate matter concentration in the air.

相關內容

Reinforcement learning (RL) with continuous state and action spaces remains one of the most challenging problems within the field. Most current learning methods focus on integral identities such as value functions to derive an optimal strategy for the learning agent. In this paper, we instead study the dual form of the original RL formulation to propose the first differential RL framework that can handle settings with limited training samples and short-length episodes. Our approach introduces Differential Policy Optimization (DPO), a pointwise and stage-wise iteration method that optimizes policies encoded by local-movement operators. We prove a pointwise convergence estimate for DPO and provide a regret bound comparable with current theoretical works. Such pointwise estimate ensures that the learned policy matches the optimal path uniformly across different steps. We then apply DPO to a class of practical RL problems which search for optimal configurations with Lagrangian rewards. DPO is easy to implement, scalable, and shows competitive results on benchmarking experiments against several popular RL methods.

Financial firms often rely on factor models to explain correlations among asset returns. These models are important for managing risk, for example by modeling the probability that many assets will simultaneously lose value. Yet after major events, e.g., COVID-19, analysts may reassess whether existing models continue to fit well: specifically, after accounting for the factor exposures, are the residuals of the asset returns independent? With this motivation, we introduce the mosaic permutation test, a nonparametric goodness-of-fit test for preexisting factor models. Our method allows analysts to use nearly any machine learning technique to detect model violations while provably controlling the false positive rate, i.e., the probability of rejecting a well-fitting model. Notably, this result does not rely on asymptotic approximations and makes no parametric assumptions. This property helps prevent analysts from unnecessarily rebuilding accurate models, which can waste resources and increase risk. We illustrate our methodology by applying it to the Blackrock Fundamental Equity Risk (BFRE) model. Using the mosaic permutation test, we find that the BFRE model generally explains the most significant correlations among assets. However, we find evidence of unexplained correlations among certain real estate stocks, and we show that adding new factors improves model fit. We implement our methods in the python package mosaicperm.

Surrogate models provide a quick-to-evaluate approximation to complex computational models and are essential for multi-query problems like design optimisation. The inputs of current computational models are usually high-dimensional and uncertain. We consider Bayesian inference for constructing statistical surrogates with input uncertainties and intrinsic dimensionality reduction. The surrogates are trained by fitting to data from prevalent deterministic computational models. The assumed prior probability density of the surrogate is a Gaussian process. We determine the respective posterior probability density and parameters of the posited statistical model using variational Bayes. The non-Gaussian posterior is approximated by a simpler trial density with free variational parameters and the discrepancy between them is measured using the Kullback-Leibler (KL) divergence. We employ the stochastic gradient method to compute the variational parameters and other statistical model parameters by minimising the KL divergence. We demonstrate the accuracy and versatility of the proposed reduced dimension variational Gaussian process (RDVGP) surrogate on illustrative and robust structural optimisation problems with cost functions depending on a weighted sum of the mean and standard deviation of model outputs.

We provide full theoretical guarantees for the convergence behaviour of diffusion-based generative models under the assumption of strongly log-concave data distributions while our approximating class of functions used for score estimation is made of Lipschitz continuous functions. We demonstrate via a motivating example, sampling from a Gaussian distribution with unknown mean, the powerfulness of our approach. In this case, explicit estimates are provided for the associated optimization problem, i.e. score approximation, while these are combined with the corresponding sampling estimates. As a result, we obtain the best known upper bound estimates in terms of key quantities of interest, such as the dimension and rates of convergence, for the Wasserstein-2 distance between the data distribution (Gaussian with unknown mean) and our sampling algorithm. Beyond the motivating example and in order to allow for the use of a diverse range of stochastic optimizers, we present our results using an $L^2$-accurate score estimation assumption, which crucially is formed under an expectation with respect to the stochastic optimizer and our novel auxiliary process that uses only known information. This approach yields the best known convergence rate for our sampling algorithm.

Test-negative designs are widely used for post-market evaluation of vaccine effectiveness, particularly in cases where randomization is not feasible. Differing from classical test-negative designs where only healthcare-seekers with symptoms are included, recent test-negative designs have involved individuals with various reasons for testing, especially in an outbreak setting. While including these data can increase sample size and hence improve precision, concerns have been raised about whether they introduce bias into the current framework of test-negative designs, thereby demanding a formal statistical examination of this modified design. In this article, using statistical derivations, causal graphs, and numerical simulations, we show that the standard odds ratio estimator may be biased if various reasons for testing are not accounted for. To eliminate this bias, we identify three categories of reasons for testing, including symptoms, disease-unrelated reasons, and case contact tracing, and characterize associated statistical properties and estimands. Based on our characterization, we show how to consistently estimate each estimand via stratification. Furthermore, we describe when these estimands correspond to the same vaccine effectiveness parameter, and, when appropriate, propose a stratified estimator that can incorporate multiple reasons for testing and improve precision. The performance of our proposed method is demonstrated through simulation studies.

In this paper a set of previous general results for the development of B--series for a broad class of stochastic differential equations has been collected. The applicability of these results is demonstrated by the derivation of B--series for non-autonomous semi-linear SDEs and exponential Runge-Kutta methods applied to this class of SDEs, which is a significant generalization of existing theory on such methods.

Generalized cross-validation (GCV) is a widely-used method for estimating the squared out-of-sample prediction risk that employs a scalar degrees of freedom adjustment (in a multiplicative sense) to the squared training error. In this paper, we examine the consistency of GCV for estimating the prediction risk of arbitrary ensembles of penalized least-squares estimators. We show that GCV is inconsistent for any finite ensemble of size greater than one. Towards repairing this shortcoming, we identify a correction that involves an additional scalar correction (in an additive sense) based on degrees of freedom adjusted training errors from each ensemble component. The proposed estimator (termed CGCV) maintains the computational advantages of GCV and requires neither sample splitting, model refitting, or out-of-bag risk estimation. The estimator stems from a finer inspection of the ensemble risk decomposition and two intermediate risk estimators for the components in this decomposition. We provide a non-asymptotic analysis of the CGCV and the two intermediate risk estimators for ensembles of convex penalized estimators under Gaussian features and a linear response model. Furthermore, in the special case of ridge regression, we extend the analysis to general feature and response distributions using random matrix theory, which establishes model-free uniform consistency of CGCV.

Any interactive protocol between a pair of parties can be reliably simulated in the presence of noise with a multiplicative overhead on the number of rounds (Schulman 1996). The reciprocal of the best (least) overhead is called the interactive capacity of the noisy channel. In this work, we present lower bounds on the interactive capacity of the binary erasure channel. Our lower bound improves the best known bound due to Ben-Yishai et al. 2021 by roughly a factor of 1.75. The improvement is due to a tighter analysis of the correctness of the simulation protocol using error pattern analysis. More precisely, instead of using the well-known technique of bounding the least number of erasures needed to make the simulation fail, we identify and bound the probability of specific erasure patterns causing simulation failure. We remark that error pattern analysis can be useful in solving other problems involving stochastic noise, such as bounding the interactive capacity of different channels.

We have introduced the generalized alternating direction implicit iteration (GADI) method for solving large sparse complex symmetric linear systems and proved its convergence properties. Additionally, some numerical results have demonstrated the effectiveness of this algorithm. Furthermore, as an application of the GADI method in solving complex symmetric linear systems, we utilized the flattening operator and Kronecker product properties to solve Lyapunov and Riccati equations with complex coefficients using the GADI method. In solving the Riccati equation, we combined inner and outer iterations, first simplifying the Riccati equation into a Lyapunov equation using the Newton method, and then applying the GADI method for solution. Finally, we provided convergence analysis of the method and corresponding numerical results.

Learning interpretable representations of data generative latent factors is an important topic for the development of artificial intelligence. With the rise of the large multimodal model, it can align images with text to generate answers. In this work, we propose a framework to comprehensively explain each latent variable in the generative models using a large multimodal model. We further measure the uncertainty of our generated explanations, quantitatively evaluate the performance of explanation generation among multiple large multimodal models, and qualitatively visualize the variations of each latent variable to learn the disentanglement effects of different generative models on explanations. Finally, we discuss the explanatory capabilities and limitations of state-of-the-art large multimodal models.

北京阿比特科技有限公司