The online bisection problem is a natural dynamic variant of the classic optimization problem, where one has to dynamically maintain a partition of $n$ elements into two clusters of cardinality $n/2$. During runtime, an online algorithm is given a sequence of requests, each being a pair of elements: an inter-cluster request costs one unit while an intra-cluster one is free. The algorithm may change the partition, paying a unit cost for each element that changes its cluster. This natural problem admits a simple deterministic $O(n^2)$-competitive algorithm [Avin et al., DISC 2016]. While several significant improvements over this result have been obtained since the original work, all of them either limit the generality of the input or assume some form of resource augmentation (e.g., larger clusters). Moreover, the algorithm of Avin et al. achieves the best known competitive ratio even if randomization is allowed. In this paper, we present the first randomized online algorithm that breaks this natural quadratic barrier and achieves a competitive ratio of $\tilde{O}(n^{23/12})$ without resource augmentation and for an arbitrary sequence of requests.
We propose a novel sensitivity analysis framework for linear estimators with identification failures that can be viewed as seeing the wrong outcome distribution. Our approach measures the degree of identification failure through the change in measure between the observed distribution and a hypothetical target distribution that would identify the causal parameter of interest. The framework yields a sensitivity analysis that generalizes existing bounds for Average Potential Outcome (APO), Regression Discontinuity (RD), and instrumental variables (IV) exclusion failure designs. Our partial identification results extend results from the APO context to allow even unbounded likelihood ratios. Our proposed sensitivity analysis consistently estimates sharp bounds under plausible conditions and estimates valid bounds under mild conditions. We find that our method performs well in simulations even when targeting a discontinuous and nearly infinite bound.
We define QSE, a symbolic execution framework for quantum programs by integrating symbolic variables into quantum states and the outcomes of quantum measurements. The soundness of QSE is established through a theorem that ensures the correctness of symbolic execution within operational semantics. We further introduce symbolic stabilizer states, which symbolize the phases of stabilizer generators, for the efficient analysis of quantum error correction (QEC) programs. Within the QSE framework, we can use symbolic expressions to characterize the possible discrete Pauli errors in QEC, providing a significant improvement over existing methods that rely on sampling with simulators. We implement QSE with the support of symbolic stabilizer states in a prototype tool named QuantumSE.jl. Our experiments on representative QEC codes, including quantum repetition codes, Kitaev's toric codes, and quantum Tanner codes, demonstrate the efficiency of QuantumSE.jl for debugging QEC programs with over 1000 qubits. In addition, by substituting concrete values in symbolic expressions of measurement results, QuantumSE.jl is also equipped with a sampling feature for stabilizer circuits. Despite a longer initialization time than the state-of-the-art stabilizer simulator, Google's Stim, QuantumSE.jl offers a quicker sampling rate in the experiments.
We investigate the unsupervised constituency parsing task, which organizes words and phrases of a sentence into a hierarchical structure without using linguistically annotated data. We observe that existing unsupervised parsers capture differing aspects of parsing structures, which can be leveraged to enhance unsupervised parsing performance. To this end, we propose a notion of "tree averaging," based on which we further propose a novel ensemble method for unsupervised parsing. To improve inference efficiency, we further distill the ensemble knowledge into a student model; such an ensemble-then-distill process is an effective approach to mitigate the over-smoothing problem existing in common multi-teacher distilling methods. Experiments show that our method surpasses all previous approaches, consistently demonstrating its effectiveness and robustness across various runs, with different ensemble components, and under domain-shift conditions.
We develop a novel approach for efficiently applying variational quantum linear solver (VQLS) in context of structured sparse matrices. Such matrices frequently arise during numerical solution of partial differential equations which are ubiquitous in science and engineering. Conventionally, Pauli basis is used for linear combination of unitary (LCU) decomposition of the underlying matrix to facilitate the evaluation the global/local VQLS cost functions. However, Pauli basis in worst case can result in number of LCU terms that scale quadratically with respect to the matrix size. We show that by using an alternate basis one can better exploit the sparsity and underlying structure of matrix leading to number of tensor product terms which scale only logarithmically with respect to the matrix size. Given this new basis is comprised of non-unitary operators, we employ the concept of unitary completion to design efficient quantum circuits for computing the global/local VQLS cost functions. We compare our approach with other related concepts in the literature including unitary dilation and measurement in Bell basis, and discuss its pros/cons while using VQLS applied to Heat equation as an example.
The list-labeling problem is one of the most basic and well-studied algorithmic primitives in data structures, with an extensive literature spanning upper bounds, lower bounds, and data management applications. The classical algorithm for this problem, dating back to 1981, has amortized cost $O(\log^2 n)$. Subsequent work has led to improvements in three directions: \emph{low-latency} (worst-case) bounds; \emph{high-throughput} (expected) bounds; and (adaptive) bounds for \emph{important workloads}. Perhaps surprisingly, these three directions of research have remained almost entirely disjoint -- this is because, so far, the techniques that allow for progress in one direction have forced worsening bounds in the others. Thus there would appear to be a tension between worst-case, adaptive, and expected bounds. List labeling has been proposed for use in databases at least as early as PODS'99, but a database needs good throughput, response time, and needs to adapt to common workloads (e.g., bulk loads), and no current list-labeling algorithm achieve good bounds for all three. We show that this tension is not fundamental. In fact, with the help of new data-structural techniques, one can actually \emph{combine} any three list-labeling solutions in order to cherry-pick the best worst-case, adaptive, and expected bounds from each of them.
In this paper, we show how mixed-integer conic optimization can be used to combine feature subset selection with holistic generalized linear models to fully automate the model selection process. Concretely, we directly optimize for the Akaike and Bayesian information criteria while imposing constraints designed to deal with multicollinearity in the feature selection task. Specifically, we propose a novel pairwise correlation constraint that combines the sign coherence constraint with ideas from classical statistical models like Ridge regression and the OSCAR model.
We study the fully dynamic maximum matching problem. In this problem, the goal is to efficiently maintain an approximate maximum matching of a graph that is subject to edge insertions and deletions. Our focus is particularly on algorithms that maintain the edges of a $(1-\epsilon)$-approximate maximum matching for an arbitrarily small constant $\epsilon > 0$. Until recently, the fastest known algorithm for this problem required $\Theta(n)$ time per update where $n$ is the number of vertices. This bound was slightly improved to $n/(\log^* n)^{\Omega(1)}$ by Assadi, Behnezhad, Khanna, and Li [STOC'23] and very recently to $n/2^{\Omega(\sqrt{\log n})}$ by Liu [ArXiv'24]. Whether this can be improved to $n^{1-\Omega(1)}$ remains a major open problem. In this paper, we present a new algorithm that maintains a $(1-\epsilon)$-approximate maximum matching. The update-time of our algorithm is parametrized based on the density of a certain class of graphs that we call Ordered Ruzsa-Szemer\'edi (ORS) graphs, a generalization of the well-known Ruzsa-Szemer\'edi graphs. While determining the density of ORS (or RS) remains a hard problem in combinatorics, we prove that if the existing constructions of ORS graphs are optimal, then our algorithm runs in $n^{1/2+O(\epsilon)}$ time for any fixed $\epsilon > 0$ which would be significantly faster than existing near-linear in $n$ time algorithms.
Contrastive learning models have achieved great success in unsupervised visual representation learning, which maximize the similarities between feature representations of different views of the same image, while minimize the similarities between feature representations of views of different images. In text summarization, the output summary is a shorter form of the input document and they have similar meanings. In this paper, we propose a contrastive learning model for supervised abstractive text summarization, where we view a document, its gold summary and its model generated summaries as different views of the same mean representation and maximize the similarities between them during training. We improve over a strong sequence-to-sequence text generation model (i.e., BART) on three different summarization datasets. Human evaluation also shows that our model achieves better faithfulness ratings compared to its counterpart without contrastive objectives.
Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.