亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we set the mathematical foundations of the Dynamical Low-Rank Approximation (DLRA) method for stochastic differential equations. DLRA aims at approximating the solution as a linear combination of a small number of basis vectors with random coefficients (low rank format) with the peculiarity that both the basis vectors and the random coefficients vary in time. While the formulation and properties of DLRA are now well understood for random/parametric equations, the same cannot be said for SDEs and this work aims to fill this gap. We start by rigorously formulating a Dynamically Orthogonal (DO) approximation (an instance of DLRA successfully used in applications) for SDEs, which we then generalize to define a parametrization independent DLRA for SDEs. We show local well-posedness of the DO equations and their equivalence with the DLRA formulation. We also characterize the explosion time of the DO solution by a loss of linear independence of the random coefficients defining the solution expansion and give sufficient conditions for global existence.

相關內容

In this paper, we introduce a method to tackle Domain Generalized Semantic Segmentation (DGSS) by utilizing domain-invariant semantic knowledge from text embeddings of vision-language models. We employ the text embeddings as object queries within a transformer-based segmentation framework (textual object queries). These queries are regarded as a domain-invariant basis for pixel grouping in DGSS. To leverage the power of textual object queries, we introduce a novel framework named the textual query-driven mask transformer (tqdm). Our tqdm aims to (1) generate textual object queries that maximally encode domain-invariant semantics and (2) enhance the semantic clarity of dense visual features. Additionally, we suggest three regularization losses to improve the efficacy of tqdm by aligning between visual and textual features. By utilizing our method, the model can comprehend inherent semantic information for classes of interest, enabling it to generalize to extreme domains (e.g., sketch style). Our tqdm achieves 68.9 mIoU on GTA5$\rightarrow$Cityscapes, outperforming the prior state-of-the-art method by 2.5 mIoU. The project page is available at //byeonghyunpak.github.io/tqdm.

In this paper, we propose an efficient multi-stage algorithm for non-adaptive Group Testing (GT) with general correlated prior statistics. The proposed solution can be applied to any correlated statistical prior represented in trellis, e.g., finite state machines and Markov processes. We introduce a variation of List Viterbi Algorithm (LVA) to enable accurate recovery using much fewer tests than objectives, which efficiently gains from the correlated prior statistics structure. Our numerical results demonstrate that the proposed Multi-Stage GT (MSGT) algorithm can obtain the optimal Maximum A Posteriori (MAP) performance with feasible complexity in practical regimes, such as with COVID-19 and sparse signal recovery applications, and reduce in the scenarios tested the number of pooled tests by at least $25\%$ compared to existing classical low complexity GT algorithms. Moreover, we analytically characterize the complexity of the proposed MSGT algorithm that guarantees its efficiency.

In this paper, we explore a quantitative approach to querying inconsistent description logic knowledge bases. We consider weighted knowledge bases in which both axioms and assertions have (possibly infinite) weights, which are used to assign a cost to each interpretation based upon the axioms and assertions it violates. Two notions of certain and possible answer are defined by either considering interpretations whose cost does not exceed a given bound or restricting attention to optimal-cost interpretations. Our main contribution is a comprehensive analysis of the combined and data complexity of bounded cost satisfiability and certain and possible answer recognition, for description logics between ELbot and ALCO.

In this paper, we propose Evidential Conformal Prediction (ECP) method for image classifiers to generate the conformal prediction sets. Our method is designed based on a non-conformity score function that has its roots in Evidential Deep Learning (EDL) as a method of quantifying model (epistemic) uncertainty in DNN classifiers. We use evidence that are derived from the logit values of target labels to compute the components of our non-conformity score function: the heuristic notion of uncertainty in CP, uncertainty surprisal, and expected utility. Our extensive experimental evaluation demonstrates that ECP outperforms three state-of-the-art methods for generating CP sets, in terms of their set sizes and adaptivity while maintaining the coverage of true labels.

With the wide application of machine translation, the testing of Machine Translation Systems (MTSs) has attracted much attention. Recent works apply Metamorphic Testing (MT) to address the oracle problem in MTS testing. Existing MT methods for MTS generally follow the workflow of input transformation and output relation comparison, which generates a follow-up input sentence by mutating the source input and compares the source and follow-up output translations to detect translation errors, respectively. These methods use various input transformations to generate test case pairs and have successfully triggered numerous translation errors. However, they have limitations in performing fine-grained and rigorous output relation comparison and thus may report many false alarms and miss many true errors. In this paper, we propose a word closure-based output comparison method to address the limitations of the existing MTS MT methods. We first propose word closure as a new comparison unit, where each closure includes a group of correlated input and output words in the test case pair. Word closures suggest the linkages between the appropriate fragment in the source output translation and its counterpart in the follow-up output for comparison. Next, we compare the semantics on the level of word closure to identify the translation errors. In this way, we perform a fine-grained and rigorous semantic comparison for the outputs and thus realize more effective violation identification. We evaluate our method with the test cases generated by five existing input transformations and the translation outputs from three popular MTSs. Results show that our method significantly outperforms the existing works in violation identification by improving the precision and recall and achieving an average increase of 29.9% in F1 score. It also helps to increase the F1 score of translation error localization by 35.9%.

In this paper, we introduce a novel and computationally efficient method for vertex embedding, community detection, and community size determination. Our approach leverages a normalized one-hot graph encoder and a rank-based cluster size measure. Through extensive simulations, we demonstrate the excellent numerical performance of our proposed graph encoder ensemble algorithm.

In this paper, we investigate ultraspherical spectral method for the Ohta-Kawasaki (OK) and Nakazawa-Ohta (NO) models in the disk domain, representing diblock and triblock copolymer systems, respectively. We employ ultraspherical spectral discretization for spatial variables in the disk domain and apply the second-order backward differentiation formula (BDF) method for temporal discretization. To our best knowledge, this is the first study to develop a numerical method for diblock and triblock copolymer systems with long-range interactions in disk domains. We show the energy stability of the numerical method in both semi-discrete and fully-discrete discretizations. In our numerical experiments, we verify the second-order temporal convergence rate and the energy stability of the proposed methods. Our numerical results show that the coarsening dynamics in diblock copolymers lead to bubble assemblies both inside and on the boundary of the disk. Additionally, in the triblock copolymer system, we observe several novel pattern formations, including single and double bubble assemblies in the unit disk. These findings are detailed through extensive numerical experiments.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.

北京阿比特科技有限公司