In this paper, we introduce ActSonic, an intelligent, low-power active acoustic sensing system integrated into eyeglasses. ActSonic is designed to recognize 27 different everyday activities (e.g., eating, drinking, toothbrushing). It only needs a pair of miniature speakers and microphones mounted on each hinge of eyeglasses to emit ultrasonic waves to create an acoustic aura around the body. Based on the position and motion of various body parts, the acoustic signals are reflected with unique patterns captured by the microphone and analyzed by a customized self-supervised deep learning framework to infer the performed activities. ActSonic was deployed in a user study with 19 participants across 19 households to evaluate its efficacy. Without requiring any training data from a new user (leave-one-participant-out evaluation), ActSonic was able to detect 27 activities with an inference resolution of 1 second, achieving an average F1-score of 86.6% in an unconstrained setting and 93.4% in a prompted setting.
In this paper, we present a flow-based method for global optimization of continuous Sobolev functions, called Stein Boltzmann Sampling (SBS). SBS initializes uniformly a number of particles representing candidate solutions, then uses the Stein Variational Gradient Descent (SVGD) algorithm to sequentially and deterministically move those particles in order to approximate a target distribution whose mass is concentrated around promising areas of the domain of the optimized function. The target is chosen to be a properly parametrized Boltzmann distribution. For the purpose of global optimization, we adapt the generic SVGD theoretical framework allowing to address more general target distributions over a compact subset of $\mathbb{R}^d$, and we prove SBS's asymptotic convergence. In addition to the main SBS algorithm, we present two variants: the SBS-PF that includes a particle filtering strategy, and the SBS-HYBRID one that uses SBS or SBS-PF as a continuation after other particle- or distribution-based optimization methods. A detailed comparison with state-of-the-art methods on benchmark functions demonstrates that SBS and its variants are highly competitive, while the combination of the two variants provides the best trade-off between accuracy and computational cost.
Existing one-shot 4D head synthesis methods usually learn from monocular videos with the aid of 3DMM reconstruction, yet the latter is evenly challenging which restricts them from reasonable 4D head synthesis. We present a method to learn one-shot 4D head synthesis via large-scale synthetic data. The key is to first learn a part-wise 4D generative model from monocular images via adversarial learning, to synthesize multi-view images of diverse identities and full motions as training data; then leverage a transformer-based animatable triplane reconstructor to learn 4D head reconstruction using the synthetic data. A novel learning strategy is enforced to enhance the generalizability to real images by disentangling the learning process of 3D reconstruction and reenactment. Experiments demonstrate our superiority over the prior art.
In this paper, we focus on distributed estimation and support recovery for high-dimensional linear quantile regression. Quantile regression is a popular alternative tool to the least squares regression for robustness against outliers and data heterogeneity. However, the non-smoothness of the check loss function poses big challenges to both computation and theory in the distributed setting. To tackle these problems, we transform the original quantile regression into the least-squares optimization. By applying a double-smoothing approach, we extend a previous Newton-type distributed approach without the restrictive independent assumption between the error term and covariates. An efficient algorithm is developed, which enjoys high computation and communication efficiency. Theoretically, the proposed distributed estimator achieves a near-oracle convergence rate and high support recovery accuracy after a constant number of iterations. Extensive experiments on synthetic examples and a real data application further demonstrate the effectiveness of the proposed method.
Integrating smart algorithms on neural devices presents significant opportunities for various brain disorders. In this paper, we review the latest advancements in the development of three categories of intelligent neural prostheses featuring embedded signal processing on the implantable or wearable device. These include: 1) Neural interfaces for closed-loop symptom tracking and responsive stimulation; 2) Neural interfaces for emerging network-related conditions, such as psychiatric disorders; and 3) Intelligent BMI SoCs for movement recovery following paralysis.
Diffusion Probabilistic Models (DPMs) have emerged as a powerful class of deep generative models, achieving remarkable performance in image synthesis tasks. However, these models face challenges in terms of widespread adoption due to their reliance on sequential denoising steps during sample generation. This dependence leads to substantial computational requirements, making them unsuitable for resource-constrained or real-time processing systems. To address these challenges, we propose a novel method that integrates denoising phases directly into the model's architecture, thereby reducing the need for resource-intensive computations. Our approach combines diffusion models with generative adversarial networks (GANs) through knowledge distillation, enabling more efficient training and evaluation. By utilizing a pre-trained diffusion model as a teacher model, we train a student model through adversarial learning, employing layerwise transformations for denoising and submodules for predicting the teacher model's output at various points in time. This integration significantly reduces the number of parameters and denoising steps required, leading to improved sampling speed at test time. We validate our method with extensive experiments, demonstrating comparable performance with reduced computational requirements compared to existing approaches. By enabling the deployment of diffusion models on resource-constrained devices, our research mitigates their computational burden and paves the way for wider accessibility and practical use across the research community and end-users. Our code is publicly available at //github.com/kidist-amde/Adv-KD
In this paper, we propose a novel data augmentation technique called GenMix, which combines generative and mixture approaches to leverage the strengths of both methods. While generative models excel at creating new data patterns, they face challenges such as mode collapse in GANs and difficulties in training diffusion models, especially with limited medical imaging data. On the other hand, mixture models enhance class boundary regions but tend to favor the major class in scenarios with class imbalance. To address these limitations, GenMix integrates both approaches to complement each other. GenMix operates in two stages: (1) training a generative model to produce synthetic images, and (2) performing mixup between synthetic and real data. This process improves the quality and diversity of synthetic data while simultaneously benefiting from the new pattern learning of generative models and the boundary enhancement of mixture models. We validate the effectiveness of our method on the task of classifying focal liver lesions (FLLs) in CT images. Our results demonstrate that GenMix enhances the performance of various generative models, including DCGAN, StyleGAN, Textual Inversion, and Diffusion Models. Notably, the proposed method with Textual Inversion outperforms other methods without fine-tuning diffusion model on the FLL dataset.
In this paper, we introduce 4DHands, a robust approach to recovering interactive hand meshes and their relative movement from monocular inputs. Our approach addresses two major limitations of previous methods: lacking a unified solution for handling various hand image inputs and neglecting the positional relationship of two hands within images. To overcome these challenges, we develop a transformer-based architecture with novel tokenization and feature fusion strategies. Specifically, we propose a Relation-aware Two-Hand Tokenization (RAT) method to embed positional relation information into the hand tokens. In this way, our network can handle both single-hand and two-hand inputs and explicitly leverage relative hand positions, facilitating the reconstruction of intricate hand interactions in real-world scenarios. As such tokenization indicates the relative relationship of two hands, it also supports more effective feature fusion. To this end, we further develop a Spatio-temporal Interaction Reasoning (SIR) module to fuse hand tokens in 4D with attention and decode them into 3D hand meshes and relative temporal movements. The efficacy of our approach is validated on several benchmark datasets. The results on in-the-wild videos and real-world scenarios demonstrate the superior performances of our approach for interactive hand reconstruction. More video results can be found on the project page: //4dhands.github.io.
Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.
In this paper, we introduce a two-level attention schema, Poolingformer, for long document modeling. Its first level uses a smaller sliding window pattern to aggregate information from neighbors. Its second level employs a larger window to increase receptive fields with pooling attention to reduce both computational cost and memory consumption. We first evaluate Poolingformer on two long sequence QA tasks: the monolingual NQ and the multilingual TyDi QA. Experimental results show that Poolingformer sits atop three official leaderboards measured by F1, outperforming previous state-of-the-art models by 1.9 points (79.8 vs. 77.9) on NQ long answer, 1.9 points (79.5 vs. 77.6) on TyDi QA passage answer, and 1.6 points (67.6 vs. 66.0) on TyDi QA minimal answer. We further evaluate Poolingformer on a long sequence summarization task. Experimental results on the arXiv benchmark continue to demonstrate its superior performance.
In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.