亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The problem $\textrm{PosSLP}$ involves determining whether an integer computed by a given straight-line program is positive. This problem has attracted considerable attention within the field of computational complexity as it provides a complete characterization of the complexity associated with numerical computation. However, non-trivial lower bounds for $\textrm{PosSLP}$ remain unknown. In this paper, we demonstrate that $\textrm{PosSLP} \in \textrm{BPP}$ would imply that $\textrm{NP} \subseteq \textrm{BPP}$, under the assumption of a conjecture concerning the complexity of the radical of a polynomial proposed by Dutta, Saxena, and Sinhababu (STOC'2018). Our proof builds upon the established $\textrm{NP}$-hardness of determining if a univariate polynomial computed by an SLP has a real root, as demonstrated by Perrucci and Sabia (JDA'2005). Therefore, our lower bound for $\textrm{PosSLP}$ represents a significant advancement in understanding the complexity of this problem. It constitutes the first non-trivial lower bound for $\textrm{PosSLP}$ , albeit conditionally. Additionally, we show that counting the real roots of an integer univariate polynomial, given as input by a straight-line program, is $\#\textrm{P}$-hard.

相關內容

CC在計算復雜性方面表現突出。它的學科處于數學與計算機理論科學的交叉點,具有清晰的數學輪廓和嚴格的數學格式。官網鏈接: · 表示學習 · Processing(編程語言) · 圖像分割 · 表示 ·
2023 年 9 月 8 日

Satellite Image Time Series (SITS) representation learning is complex due to high spatiotemporal resolutions, irregular acquisition times, and intricate spatiotemporal interactions. These challenges result in specialized neural network architectures tailored for SITS analysis. The field has witnessed promising results achieved by pioneering researchers, but transferring the latest advances or established paradigms from Computer Vision (CV) to SITS is still highly challenging due to the existing suboptimal representation learning framework. In this paper, we develop a novel perspective of SITS processing as a direct set prediction problem, inspired by the recent trend in adopting query-based transformer decoders to streamline the object detection or image segmentation pipeline. We further propose to decompose the representation learning process of SITS into three explicit steps: collect-update-distribute, which is computationally efficient and suits for irregularly-sampled and asynchronous temporal satellite observations. Facilitated by the unique reformulation, our proposed temporal learning backbone of SITS, initially pre-trained on the resource efficient pixel-set format and then fine-tuned on the downstream dense prediction tasks, has attained new state-of-the-art (SOTA) results on the PASTIS benchmark dataset. Specifically, the clear separation between temporal and spatial components in the semantic/panoptic segmentation pipeline of SITS makes us leverage the latest advances in CV, such as the universal image segmentation architecture, resulting in a noticeable 2.5 points increase in mIoU and 8.8 points increase in PQ, respectively, compared to the best scores reported so far.

Adversarial examples, inputs designed to induce worst-case behavior in machine learning models, have been extensively studied over the past decade. Yet, our understanding of this phenomenon stems from a rather fragmented pool of knowledge; at present, there are a handful of attacks, each with disparate assumptions in threat models and incomparable definitions of optimality. In this paper, we propose a systematic approach to characterize worst-case (i.e., optimal) adversaries. We first introduce an extensible decomposition of attacks in adversarial machine learning by atomizing attack components into surfaces and travelers. With our decomposition, we enumerate over components to create 576 attacks (568 of which were previously unexplored). Next, we propose the Pareto Ensemble Attack (PEA): a theoretical attack that upper-bounds attack performance. With our new attacks, we measure performance relative to the PEA on: both robust and non-robust models, seven datasets, and three extended lp-based threat models incorporating compute costs, formalizing the Space of Adversarial Strategies. From our evaluation we find that attack performance to be highly contextual: the domain, model robustness, and threat model can have a profound influence on attack efficacy. Our investigation suggests that future studies measuring the security of machine learning should: (1) be contextualized to the domain & threat models, and (2) go beyond the handful of known attacks used today.

Given a continuous definable function $f: S \to \mathbb{R}$ on a definable set $S$, we study sublevel sets of the form $S^f_t = \{x \in S: f(x) \leq t\}$ for all $t \in \mathbb{R}$. Using o-minimal structures, we prove that the Euler characteristic of $S^f_t$ is right continuous with respect to $t$. Furthermore, when $S$ is compact, we show that $S^f_{t+\delta}$ deformation retracts to $S^f_t$ for all sufficiently small $\delta > 0$. Applying these results, we also characterize the relationship between the concepts of Euler characteristic transform and smooth Euler characteristic transform in topological data analysis.

Graph representations are the generalization of geometric graph drawings from the plane to higher dimensions. A method introduced by Tutte to optimize properties of graph drawings is to minimize their energy. We explore this minimization for spherical graph representations, where the vertices lie on a unit sphere such that the origin is their barycentre. We present a primal and dual semidefinite program which can be used to find such a spherical graph representation minimizing the energy. We denote the optimal value of this program by $\rho(G)$ for a given graph $G$. The value turns out to be related to the second largest eigenvalue of the adjacency matrix of $G$, which we denote by $\lambda_2$. We show that for $G$ regular, $\rho(G) \leq \frac{\lambda_{2}}{2} \cdot v(G)$, and that equality holds if and only if the $\lambda_{2}$ eigenspace contains a spherical 1-design. Moreover, if $G$ is a random $d$-regular graph, $\rho(G)=\left(\sqrt{(d-1)} +o(1)\right)\cdot v(G)$, asymptotically almost surely.

Neural radiance fields (NeRFs) have emerged as an effective method for novel-view synthesis and 3D scene reconstruction. However, conventional training methods require access to all training views during scene optimization. This assumption may be prohibitive in continual learning scenarios, where new data is acquired in a sequential manner and a continuous update of the NeRF is desired, as in automotive or remote sensing applications. When naively trained in such a continual setting, traditional scene representation frameworks suffer from catastrophic forgetting, where previously learned knowledge is corrupted after training on new data. Prior works in alleviating forgetting with NeRFs suffer from low reconstruction quality and high latency, making them impractical for real-world application. We propose a continual learning framework for training NeRFs that leverages replay-based methods combined with a hybrid explicit--implicit scene representation. Our method outperforms previous methods in reconstruction quality when trained in a continual setting, while having the additional benefit of being an order of magnitude faster.

Artificial Intelligence for IT Operations (AIOps) leverages AI approaches to handle the massive amount of data generated during the operations of software systems. Prior works have proposed various AIOps solutions to support different tasks in system operations and maintenance, such as anomaly detection. In this study, we conduct an in-depth analysis of open-source AIOps projects to understand the characteristics of AIOps in practice. We first carefully identify a set of AIOps projects from GitHub and analyze their repository metrics (e.g., the used programming languages). Then, we qualitatively examine the projects to understand their input data, analysis techniques, and goals. Finally, we assess the quality of these projects using different quality metrics, such as the number of bugs. To provide context, we also sample two sets of baseline projects from GitHub: a random sample of machine learning projects and a random sample of general-purposed projects. By comparing different metrics between our identified AIOps projects and these baselines, we derive meaningful insights. Our results reveal a recent and growing interest in AIOps solutions. However, the quality metrics indicate that AIOps projects suffer from more issues than our baseline projects. We also pinpoint the most common issues in AIOps approaches and discuss potential solutions to address these challenges. Our findings offer valuable guidance to researchers and practitioners, enabling them to comprehend the current state of AIOps practices and shed light on different ways of improving AIOps' weaker aspects. To the best of our knowledge, this work marks the first attempt to characterize open-source AIOps projects.

Rishi Bommasani,Drew A. Hudson,Ehsan Adeli,Russ Altman,Simran Arora,Sydney von Arx,Michael S. Bernstein,Jeannette Bohg,Antoine Bosselut,Emma Brunskill,Erik Brynjolfsson,Shyamal Buch,Dallas Card,Rodrigo Castellon,Niladri Chatterji,Annie Chen,Kathleen Creel,Jared Quincy Davis,Dora Demszky,Chris Donahue,Moussa Doumbouya,Esin Durmus,Stefano Ermon,John Etchemendy,Kawin Ethayarajh,Li Fei-Fei,Chelsea Finn,Trevor Gale,Lauren Gillespie,Karan Goel,Noah Goodman,Shelby Grossman,Neel Guha,Tatsunori Hashimoto,Peter Henderson,John Hewitt,Daniel E. Ho,Jenny Hong,Kyle Hsu,Jing Huang,Thomas Icard,Saahil Jain,Dan Jurafsky,Pratyusha Kalluri,Siddharth Karamcheti,Geoff Keeling,Fereshte Khani,Omar Khattab,Pang Wei Kohd,Mark Krass,Ranjay Krishna,Rohith Kuditipudi,Ananya Kumar,Faisal Ladhak,Mina Lee,Tony Lee,Jure Leskovec,Isabelle Levent,Xiang Lisa Li,Xuechen Li,Tengyu Ma,Ali Malik,Christopher D. Manning,Suvir Mirchandani,Eric Mitchell,Zanele Munyikwa,Suraj Nair,Avanika Narayan,Deepak Narayanan,Ben Newman,Allen Nie,Juan Carlos Niebles,Hamed Nilforoshan,Julian Nyarko,Giray Ogut,Laurel Orr,Isabel Papadimitriou,Joon Sung Park,Chris Piech,Eva Portelance,Christopher Potts,Aditi Raghunathan,Rob Reich,Hongyu Ren,Frieda Rong,Yusuf Roohani,Camilo Ruiz,Jack Ryan,Christopher Ré,Dorsa Sadigh,Shiori Sagawa,Keshav Santhanam,Andy Shih,Krishnan Srinivasan,Alex Tamkin,Rohan Taori,Armin W. Thomas,Florian Tramèr,Rose E. Wang,William Wang,Bohan Wu,Jiajun Wu,Yuhuai Wu,Sang Michael Xie,Michihiro Yasunaga,Jiaxuan You,Matei Zaharia,Michael Zhang,Tianyi Zhang,Xikun Zhang,Yuhui Zhang,Lucia Zheng,Kaitlyn Zhou,Percy Liang
Rishi Bommasani,Drew A. Hudson,Ehsan Adeli,Russ Altman,Simran Arora,Sydney von Arx,Michael S. Bernstein,Jeannette Bohg,Antoine Bosselut,Emma Brunskill,Erik Brynjolfsson,Shyamal Buch,Dallas Card,Rodrigo Castellon,Niladri Chatterji,Annie Chen,Kathleen Creel,Jared Quincy Davis,Dora Demszky,Chris Donahue,Moussa Doumbouya,Esin Durmus,Stefano Ermon,John Etchemendy,Kawin Ethayarajh,Li Fei-Fei,Chelsea Finn,Trevor Gale,Lauren Gillespie,Karan Goel,Noah Goodman,Shelby Grossman,Neel Guha,Tatsunori Hashimoto,Peter Henderson,John Hewitt,Daniel E. Ho,Jenny Hong,Kyle Hsu,Jing Huang,Thomas Icard,Saahil Jain,Dan Jurafsky,Pratyusha Kalluri,Siddharth Karamcheti,Geoff Keeling,Fereshte Khani,Omar Khattab,Pang Wei Kohd,Mark Krass,Ranjay Krishna,Rohith Kuditipudi,Ananya Kumar,Faisal Ladhak,Mina Lee,Tony Lee,Jure Leskovec,Isabelle Levent,Xiang Lisa Li,Xuechen Li,Tengyu Ma,Ali Malik,Christopher D. Manning,Suvir Mirchandani,Eric Mitchell,Zanele Munyikwa,Suraj Nair,Avanika Narayan,Deepak Narayanan,Ben Newman,Allen Nie,Juan Carlos Niebles,Hamed Nilforoshan,Julian Nyarko,Giray Ogut,Laurel Orr,Isabel Papadimitriou,Joon Sung Park,Chris Piech,Eva Portelance,Christopher Potts,Aditi Raghunathan,Rob Reich,Hongyu Ren,Frieda Rong,Yusuf Roohani,Camilo Ruiz,Jack Ryan,Christopher Ré,Dorsa Sadigh,Shiori Sagawa,Keshav Santhanam,Andy Shih,Krishnan Srinivasan,Alex Tamkin,Rohan Taori,Armin W. Thomas,Florian Tramèr,Rose E. Wang,William Wang,Bohan Wu,Jiajun Wu,Yuhuai Wu,Sang Michael Xie,Michihiro Yasunaga,Jiaxuan You,Matei Zaharia,Michael Zhang,Tianyi Zhang,Xikun Zhang,Yuhui Zhang,Lucia Zheng,Kaitlyn Zhou,Percy Liang

AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.

It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.

Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.

Image segmentation is an important component of many image understanding systems. It aims to group pixels in a spatially and perceptually coherent manner. Typically, these algorithms have a collection of parameters that control the degree of over-segmentation produced. It still remains a challenge to properly select such parameters for human-like perceptual grouping. In this work, we exploit the diversity of segments produced by different choices of parameters. We scan the segmentation parameter space and generate a collection of image segmentation hypotheses (from highly over-segmented to under-segmented). These are fed into a cost minimization framework that produces the final segmentation by selecting segments that: (1) better describe the natural contours of the image, and (2) are more stable and persistent among all the segmentation hypotheses. We compare our algorithm's performance with state-of-the-art algorithms, showing that we can achieve improved results. We also show that our framework is robust to the choice of segmentation kernel that produces the initial set of hypotheses.

北京阿比特科技有限公司