Recent studies have significantly enhanced the performance of single-image super-resolution (SR) using convolutional neural networks (CNNs). While there can be many high-resolution (HR) solutions for a given input, most existing CNN-based methods do not explore alternative solutions during the inference. A typical approach to obtaining alternative SR results is to train multiple SR models with different loss weightings and exploit the combination of these models. Instead of using multiple models, we present a more efficient method to train a single adjustable SR model on various combinations of losses by taking advantage of multi-task learning. Specifically, we optimize an SR model with a conditional objective during training, where the objective is a weighted sum of multiple perceptual losses at different feature levels. The weights vary according to given conditions, and the set of weights is defined as a style controller. Also, we present an architecture appropriate for this training scheme, which is the Residual-in-Residual Dense Block equipped with spatial feature transformation layers. At the inference phase, our trained model can generate locally different outputs conditioned on the style control map. Extensive experiments show that the proposed SR model produces various desirable reconstructions without artifacts and yields comparable quantitative performance to state-of-the-art SR methods.
Dropout is designed to relieve the overfitting problem in high-level vision tasks but is rarely applied in low-level vision tasks, like image super-resolution (SR). As a classic regression problem, SR exhibits a different behaviour as high-level tasks and is sensitive to the dropout operation. However, in this paper, we show that appropriate usage of dropout benefits SR networks and improves the generalization ability. Specifically, dropout is better embedded at the end of the network and is significantly helpful for the multi-degradation settings. This discovery breaks our common sense and inspires us to explore its working mechanism. We further use two analysis tools -- one is from recent network interpretation works, and the other is specially designed for this task. The analysis results provide side proofs to our experimental findings and show us a new perspective to understand SR networks.
HDR is an important part of computational photography technology. In this paper, we propose a lightweight neural network called Efficient Attention-and-alignment-guided Progressive Network (EAPNet) for the challenge NTIRE 2022 HDR Track 1 and Track 2. We introduce a multi-dimensional lightweight encoding module to extract features. Besides, we propose Progressive Dilated U-shape Block (PDUB) that can be a progressive plug-and-play module for dynamically tuning MAccs and PSNR. Finally, we use fast and low-power feature-align module to deal with misalignment problem in place of the time-consuming Deformable Convolutional Network (DCN). The experiments show that our method achieves about 20 times compression on MAccs with better mu-PSNR and PSNR compared to the state-of-the-art method. We got the second place of both two tracks during the testing phase. Figure1. shows the visualized result of NTIRE 2022 HDR challenge.
Super-Resolution is the technique to improve the quality of a low-resolution photo by boosting its plausible resolution. The computer vision community has extensively explored the area of Super-Resolution. However, previous Super-Resolution methods require vast amounts of data for training which becomes problematic in domains where very few low-resolution, high-resolution pairs might be available. One such area is statistical downscaling, where super-resolution is increasingly being used to obtain high-resolution climate information from low-resolution data. Acquiring high-resolution climate data is extremely expensive and challenging. To reduce the cost of generating high-resolution climate information, Super-Resolution algorithms should be able to train with a limited number of low-resolution, high-resolution pairs. This paper tries to solve the aforementioned problem by introducing a semi-supervised way to perform super-resolution that can generate sharp, high-resolution images with as few as 500 paired examples. The proposed semi-supervised technique can be used as a plug-and-play module with any supervised GAN-based Super-Resolution method to enhance its performance. We quantitatively and qualitatively analyze the performance of the proposed model and compare it with completely supervised methods as well as other unsupervised techniques. Comprehensive evaluations show the superiority of our method over other methods on different metrics. We also offer the applicability of our approach in statistical downscaling to obtain high-resolution climate images.
Recently, deep convolution neural networks (CNNs) steered face super-resolution methods have achieved great progress in restoring degraded facial details by jointly training with facial priors. However, these methods have some obvious limitations. On the one hand, multi-task joint learning requires additional marking on the dataset, and the introduced prior network will significantly increase the computational cost of the model. On the other hand, the limited receptive field of CNN will reduce the fidelity and naturalness of the reconstructed facial images, resulting in suboptimal reconstructed images. In this work, we propose an efficient CNN-Transformer Cooperation Network (CTCNet) for face super-resolution tasks, which uses the multi-scale connected encoder-decoder architecture as the backbone. Specifically, we first devise a novel Local-Global Feature Cooperation Module (LGCM), which is composed of a Facial Structure Attention Unit (FSAU) and a Transformer block, to promote the consistency of local facial detail and global facial structure restoration simultaneously. Then, we design an efficient Local Feature Refinement Module (LFRM) to enhance the local facial structure information. Finally, to further improve the restoration of fine facial details, we present a Multi-scale Feature Fusion Unit (MFFU) to adaptively fuse the features from different stages in the encoder procedure. Comprehensive evaluations on various datasets have assessed that the proposed CTCNet can outperform other state-of-the-art methods significantly.
Most deep learning models for computational imaging regress a single reconstructed image. In practice, however, ill-posedness, nonlinearity, model mismatch, and noise often conspire to make such point estimates misleading or insufficient. The Bayesian approach models images and (noisy) measurements as jointly distributed random vectors and aims to approximate the posterior distribution of unknowns. Recent variational inference methods based on conditional normalizing flows are a promising alternative to traditional MCMC methods, but they come with drawbacks: excessive memory and compute demands for moderate to high resolution images and underwhelming performance on hard nonlinear problems. In this work, we propose C-Trumpets -- conditional injective flows specifically designed for imaging problems, which greatly diminish these challenges. Injectivity reduces memory footprint and training time while low-dimensional latent space together with architectural innovations like fixed-volume-change layers and skip-connection revnet layers, C-Trumpets outperform regular conditional flow models on a variety of imaging and image restoration tasks, including limited-view CT and nonlinear inverse scattering, with a lower compute and memory budget. C-Trumpets enable fast approximation of point estimates like MMSE or MAP as well as physically-meaningful uncertainty quantification.
Previous works on image inpainting mainly focus on inpainting background or partially missing objects, while the problem of inpainting an entire missing object remains unexplored. This work studies a new image inpainting task, i.e. shape-guided object inpainting. Given an incomplete input image, the goal is to fill in the hole by generating an object based on the context and implicit guidance given by the hole shape. Since previous methods for image inpainting are mainly designed for background inpainting, they are not suitable for this task. Therefore, we propose a new data preparation method and a novel Contextual Object Generator (CogNet) for the object inpainting task. On the data side, we incorporate object priors into training data by using object instances as holes. The CogNet has a two-stream architecture that combines the standard bottom-up image completion process with a top-down object generation process. A predictive class embedding module bridges the two streams by predicting the class of the missing object from the bottom-up features, from which a semantic object map is derived as the input of the top-down stream. Experiments demonstrate that the proposed method can generate realistic objects that fit the context in terms of both visual appearance and semantic meanings. Code can be found at the project page \url{//zengxianyu.github.io/objpaint}
Convolutional neural networks (CNNs) have shown dramatic improvements in single image super-resolution (SISR) by using large-scale external samples. Despite their remarkable performance based on the external dataset, they cannot exploit internal information within a specific image. Another problem is that they are applicable only to the specific condition of data that they are supervised. For instance, the low-resolution (LR) image should be a "bicubic" downsampled noise-free image from a high-resolution (HR) one. To address both issues, zero-shot super-resolution (ZSSR) has been proposed for flexible internal learning. However, they require thousands of gradient updates, i.e., long inference time. In this paper, we present Meta-Transfer Learning for Zero-Shot Super-Resolution (MZSR), which leverages ZSSR. Precisely, it is based on finding a generic initial parameter that is suitable for internal learning. Thus, we can exploit both external and internal information, where one single gradient update can yield quite considerable results. (See Figure 1). With our method, the network can quickly adapt to a given image condition. In this respect, our method can be applied to a large spectrum of image conditions within a fast adaptation process.
Modern neural network training relies heavily on data augmentation for improved generalization. After the initial success of label-preserving augmentations, there has been a recent surge of interest in label-perturbing approaches, which combine features and labels across training samples to smooth the learned decision surface. In this paper, we propose a new augmentation method that leverages the first and second moments extracted and re-injected by feature normalization. We replace the moments of the learned features of one training image by those of another, and also interpolate the target labels. As our approach is fast, operates entirely in feature space, and mixes different signals than prior methods, one can effectively combine it with existing augmentation methods. We demonstrate its efficacy across benchmark data sets in computer vision, speech, and natural language processing, where it consistently improves the generalization performance of highly competitive baseline networks.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).
Generative Adversarial Networks (GANs) can produce images of surprising complexity and realism, but are generally modeled to sample from a single latent source ignoring the explicit spatial interaction between multiple entities that could be present in a scene. Capturing such complex interactions between different objects in the world, including their relative scaling, spatial layout, occlusion, or viewpoint transformation is a challenging problem. In this work, we propose to model object composition in a GAN framework as a self-consistent composition-decomposition network. Our model is conditioned on the object images from their marginal distributions to generate a realistic image from their joint distribution by explicitly learning the possible interactions. We evaluate our model through qualitative experiments and user evaluations in both the scenarios when either paired or unpaired examples for the individual object images and the joint scenes are given during training. Our results reveal that the learned model captures potential interactions between the two object domains given as input to output new instances of composed scene at test time in a reasonable fashion.