To support the stringent requirements of the future intelligent and interactive applications, intelligence needs to become an essential part of the resource management in the edge environment. Developing intelligent orchestration solutions is a challenging and arduous task, where the evaluation and comparison of the proposed solution is a focal point. Simulation is commonly used to evaluate and compare proposed solutions. However, the currently existing, openly available simulators are lacking in terms of supporting the research on intelligent edge orchestration methods. To address this need, this article presents a simulation platform called Edge Intelligence Simulator (EISim), the purpose of which is to facilitate the research on intelligent edge orchestration solutions. EISim is extended from an existing fog simulator called PureEdgeSim. In its current form, EISim supports simulating deep reinforcement learning based solutions and different orchestration control topologies in scenarios related to task offloading and resource pricing on edge. The platform also includes additional tools for creating simulation environments, running simulations for agent training and evaluation, and plotting results.
Multimedia generation approaches occupy a prominent place in artificial intelligence research. Text-to-image models achieved high-quality results over the last few years. However, video synthesis methods recently started to develop. This paper presents a new two-stage latent diffusion text-to-video generation architecture based on the text-to-image diffusion model. The first stage concerns keyframes synthesis to figure the storyline of a video, while the second one is devoted to interpolation frames generation to make movements of the scene and objects smooth. We compare several temporal conditioning approaches for keyframes generation. The results show the advantage of using separate temporal blocks over temporal layers in terms of metrics reflecting video generation quality aspects and human preference. The design of our interpolation model significantly reduces computational costs compared to other masked frame interpolation approaches. Furthermore, we evaluate different configurations of MoVQ-based video decoding scheme to improve consistency and achieve higher PSNR, SSIM, MSE, and LPIPS scores. Finally, we compare our pipeline with existing solutions and achieve top-2 scores overall and top-1 among open-source solutions: CLIPSIM = 0.2976 and FVD = 433.054. Project page: //ai-forever.github.io/kandinsky-video/
Multi-agent and multi-robot systems (MRS) often rely on direct communication for information sharing. This work explores an alternative approach inspired by eavesdropping mechanisms in nature that involves casual observation of agent interactions to enhance decentralized knowledge dissemination. We achieve this through a novel IKT-BT framework tailored for a behavior-based MRS, encapsulating knowledge and control actions in Behavior Trees (BT). We present two new BT-based modalities - eavesdrop-update (EU) and eavesdrop-buffer-update (EBU) - incorporating unique eavesdropping strategies and efficient episodic memory management suited for resource-limited swarm robots. We theoretically analyze the IKT-BT framework for an MRS and validate the performance of the proposed modalities through extensive experiments simulating a search and rescue mission. Our results reveal improvements in both global mission performance outcomes and agent-level knowledge dissemination with a reduced need for direct communication.
Powered by new advances in sensor development and artificial intelligence, the decreasing cost of computation, and the pervasiveness of handheld computation devices, biometric user authentication (and identification) is rapidly becoming ubiquitous. Modern approaches to biometric authentication, based on sophisticated machine learning techniques, cannot avoid storing either trained-classifier details or explicit user biometric data, thus exposing users' credentials to falsification. In this paper, we introduce a secure way to handle user-specific information involved with the use of vector-space classifiers or artificial neural networks for biometric authentication. Our proposed architecture, called a Neural Fuzzy Extractor (NFE), allows the coupling of pre-existing classifiers with fuzzy extractors, through a artificial-neural-network-based buffer called an expander, with minimal or no performance degradation. The NFE thus offers all the performance advantages of modern deep-learning-based classifiers, and all the security of standard fuzzy extractors. We demonstrate the NFE retrofit to a classic artificial neural network for a simple scenario of fingerprint-based user authentication.
Generative AI capabilities have grown substantially in recent years, raising renewed concerns about potential malicious use of generated data, or "deep fakes". However, deep fake datasets have not kept up with generative AI advancements sufficiently to enable the development of deep fake detection technology which can meaningfully alert human users in real-world settings. Existing datasets typically use GAN-based models and introduce spurious correlations by always editing similar face regions. To counteract the shortcomings, we introduce DETER, a large-scale dataset for DETEcting edited image Regions and deterring modern advanced generative manipulations. DETER includes 300,000 images manipulated by four state-of-the-art generators with three editing operations: face swapping (a standard coarse image manipulation), inpainting (a novel manipulation for deep fake datasets), and attribute editing (a subtle fine-grained manipulation). While face swapping and attribute editing are performed on similar face regions such as eyes and nose, the inpainting operation can be performed on random image regions, removing the spurious correlations of previous datasets. Careful image post-processing is performed to ensure deep fakes in DETER look realistic, and human studies confirm that human deep fake detection rate on DETER is 20.4% lower than on other fake datasets. Equipped with the dataset, we conduct extensive experiments and break-down analysis using our rich annotations and improved benchmark protocols, revealing future directions and the next set of challenges in developing reliable regional fake detection models.
Although the applications of artificial intelligence especially deep learning had greatly improved various aspects of intelligent manufacturing, they still face challenges for wide employment due to the poor generalization ability, difficulties to establish high-quality training datasets, and unsatisfactory performance of deep learning methods. The emergence of large scale foundational models(LSFMs) had triggered a wave in the field of artificial intelligence, shifting deep learning models from single-task, single-modal, limited data patterns to a paradigm encompassing diverse tasks, multimodal, and pre-training on massive datasets. Although LSFMs had demonstrated powerful generalization capabilities, automatic high-quality training dataset generation and superior performance across various domains, applications of LSFMs on intelligent manufacturing were still in their nascent stage. A systematic overview of this topic was lacking, especially regarding which challenges of deep learning can be addressed by LSFMs and how these challenges can be systematically tackled. To fill this gap, this paper systematically expounded current statue of LSFMs and their advantages in the context of intelligent manufacturing. and compared comprehensively with the challenges faced by current deep learning models in various intelligent manufacturing applications. We also outlined the roadmaps for utilizing LSFMs to address these challenges. Finally, case studies of applications of LSFMs in real-world intelligent manufacturing scenarios were presented to illustrate how LSFMs could help industries, improve their efficiency.
Process mining, a data-driven approach for analyzing, visualizing, and improving business processes using event logs, has emerged as a powerful technique in the field of business process management. Process forecasting is a sub-field of process mining that studies how to predict future processes and process models. In this paper, we introduce and motivate the problem of event log prediction and present our approach to solving the event log prediction problem, in particular, using the sequence-to-sequence deep learning approach. We evaluate and analyze the prediction outcomes on a variety of synthetic logs and seven real-life logs and show that our approach can generate perfect predictions on synthetic logs and that deep learning techniques have the potential to be applied in real-world event log prediction tasks. We further provide practical recommendations for event log predictions grounded in the outcomes of the conducted experiments.
More than one hundred benchmarks have been developed to test the commonsense knowledge and commonsense reasoning abilities of artificial intelligence (AI) systems. However, these benchmarks are often flawed and many aspects of common sense remain untested. Consequently, we do not currently have any reliable way of measuring to what extent existing AI systems have achieved these abilities. This paper surveys the development and uses of AI commonsense benchmarks. We discuss the nature of common sense; the role of common sense in AI; the goals served by constructing commonsense benchmarks; and desirable features of commonsense benchmarks. We analyze the common flaws in benchmarks, and we argue that it is worthwhile to invest the work needed ensure that benchmark examples are consistently high quality. We survey the various methods of constructing commonsense benchmarks. We enumerate 139 commonsense benchmarks that have been developed: 102 text-based, 18 image-based, 12 video based, and 7 simulated physical environments. We discuss the gaps in the existing benchmarks and aspects of commonsense reasoning that are not addressed in any existing benchmark. We conclude with a number of recommendations for future development of commonsense AI benchmarks.
Transformers have achieved superior performances in many tasks in natural language processing and computer vision, which also intrigues great interests in the time series community. Among multiple advantages of transformers, the ability to capture long-range dependencies and interactions is especially attractive for time series modeling, leading to exciting progress in various time series applications. In this paper, we systematically review transformer schemes for time series modeling by highlighting their strengths as well as limitations through a new taxonomy to summarize existing time series transformers in two perspectives. From the perspective of network modifications, we summarize the adaptations of module level and architecture level of the time series transformers. From the perspective of applications, we categorize time series transformers based on common tasks including forecasting, anomaly detection, and classification. Empirically, we perform robust analysis, model size analysis, and seasonal-trend decomposition analysis to study how Transformers perform in time series. Finally, we discuss and suggest future directions to provide useful research guidance. To the best of our knowledge, this paper is the first work to comprehensively and systematically summarize the recent advances of Transformers for modeling time series data. We hope this survey will ignite further research interests in time series Transformers.
Graph representation learning resurges as a trending research subject owing to the widespread use of deep learning for Euclidean data, which inspire various creative designs of neural networks in the non-Euclidean domain, particularly graphs. With the success of these graph neural networks (GNN) in the static setting, we approach further practical scenarios where the graph dynamically evolves. Existing approaches typically resort to node embeddings and use a recurrent neural network (RNN, broadly speaking) to regulate the embeddings and learn the temporal dynamics. These methods require the knowledge of a node in the full time span (including both training and testing) and are less applicable to the frequent change of the node set. In some extreme scenarios, the node sets at different time steps may completely differ. To resolve this challenge, we propose EvolveGCN, which adapts the graph convolutional network (GCN) model along the temporal dimension without resorting to node embeddings. The proposed approach captures the dynamism of the graph sequence through using an RNN to evolve the GCN parameters. Two architectures are considered for the parameter evolution. We evaluate the proposed approach on tasks including link prediction, edge classification, and node classification. The experimental results indicate a generally higher performance of EvolveGCN compared with related approaches. The code is available at \url{//github.com/IBM/EvolveGCN}.
With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.