亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In high dimensional variable selection problems, statisticians often seek to design multiple testing procedures that control the False Discovery Rate (FDR), while concurrently identifying a greater number of relevant variables. Model-X methods, such as Knockoffs and conditional randomization tests, achieve the primary goal of finite-sample FDR control, assuming a known distribution of covariates. However, whether these methods can also achieve the secondary goal of maximizing discoveries remains uncertain. In fact, designing procedures to discover more relevant variables with finite-sample FDR control is a largely open question, even within the arguably simplest linear models. In this paper, we develop near-optimal multiple testing procedures for high dimensional Bayesian linear models with isotropic covariates. We introduce Model-X procedures that provably control the frequentist FDR from finite samples, even when the model is misspecified, and conjecturally achieve near-optimal power when the data follow the Bayesian linear model. Our proposed procedure, PoEdCe, incorporates three key ingredients: Posterior Expectation, distilled Conditional randomization test (dCRT), and the Benjamini-Hochberg procedure with e-values (eBH). The optimality conjecture of PoEdCe is based on a heuristic calculation of its asymptotic true positive proportion (TPP) and false discovery proportion (FDP), which is supported by methods from statistical physics as well as extensive numerical simulations. Our result establishes the Bayesian linear model as a benchmark for comparing the power of various multiple testing procedures.

相關內容

對于給定d個屬性描述的示例x=(x1,x2,......,xd),通過屬性的線性組合來進行預測。一般的寫法如下: f(x)=w'x+b,因此,線性模型具有很好的解釋性(understandability,comprehensibility),參數w代表每個屬性在回歸過程中的重要程度。

This work uses the entropy-regularised relaxed stochastic control perspective as a principled framework for designing reinforcement learning (RL) algorithms. Herein agent interacts with the environment by generating noisy controls distributed according to the optimal relaxed policy. The noisy policies on the one hand, explore the space and hence facilitate learning but, on the other hand, introduce bias by assigning a positive probability to non-optimal actions. This exploration-exploitation trade-off is determined by the strength of entropy regularisation. We study algorithms resulting from two entropy regularisation formulations: the exploratory control approach, where entropy is added to the cost objective, and the proximal policy update approach, where entropy penalises policy divergence between consecutive episodes. We focus on the finite horizon continuous-time linear-quadratic (LQ) RL problem, where a linear dynamics with unknown drift coefficients is controlled subject to quadratic costs. In this setting, both algorithms yield a Gaussian relaxed policy. We quantify the precise difference between the value functions of a Gaussian policy and its noisy evaluation and show that the execution noise must be independent across time. By tuning the frequency of sampling from relaxed policies and the parameter governing the strength of entropy regularisation, we prove that the regret, for both learning algorithms, is of the order $\mathcal{O}(\sqrt{N}) $ (up to a logarithmic factor) over $N$ episodes, matching the best known result from the literature.

Current physics-informed (standard or operator) neural networks still rely on accurately learning the initial conditions of the system they are solving. In contrast, standard numerical methods evolve such initial conditions without needing to learn these. In this study, we propose to improve current physics-informed deep learning strategies such that initial conditions do not need to be learned and are represented exactly in the predicted solution. Moreover, this method guarantees that when a DeepONet is applied multiple times to time step a solution, the resulting function is continuous.

Modern semiconductor manufacturing involves intricate production processes consisting of hundreds of operations, which can take several months from lot release to completion. The high-tech machines used in these processes are diverse, operate on individual wafers, lots, or batches in multiple stages, and necessitate product-specific setups and specialized maintenance procedures. This situation is different from traditional job-shop scheduling scenarios, which have less complex production processes and machines, and mainly focus on solving highly combinatorial but abstract scheduling problems. In this work, we address the scheduling of realistic semiconductor manufacturing processes by modeling their specific requirements using hybrid Answer Set Programming with difference logic, incorporating flexible machine processing, setup, batching and maintenance operations. Unlike existing methods that schedule semiconductor manufacturing processes locally with greedy heuristics or by independently optimizing specific machine group allocations, we examine the potentials of large-scale scheduling subject to multiple optimization objectives.

Auditory spatial attention detection (ASAD) aims to decode the attended spatial location with EEG in a multiple-speaker setting. ASAD methods are inspired by the brain lateralization of cortical neural responses during the processing of auditory spatial attention, and show promising performance for the task of auditory attention decoding (AAD) with neural recordings. In the previous ASAD methods, the spatial distribution of EEG electrodes is not fully exploited, which may limit the performance of these methods. In the present work, by transforming the original EEG channels into a two-dimensional (2D) spatial topological map, the EEG data is transformed into a three-dimensional (3D) arrangement containing spatial-temporal information. And then a 3D deep convolutional neural network (DenseNet-3D) is used to extract temporal and spatial features of the neural representation for the attended locations. The results show that the proposed method achieves higher decoding accuracy than the state-of-the-art (SOTA) method (94.4% compared to XANet's 90.6%) with 1-second decision window for the widely used KULeuven (KUL) dataset, and the code to implement our work is available on Github: //github.com/xuxiran/ASAD_DenseNet

This study presents a comparative analysis of three predictive models with an increasing degree of flexibility: hidden dynamic geostatistical models (HDGM), generalised additive mixed models (GAMM), and the random forest spatiotemporal kriging models (RFSTK). These models are evaluated for their effectiveness in predicting PM$_{2.5}$ concentrations in Lombardy (North Italy) from 2016 to 2020. Despite differing methodologies, all models demonstrate proficient capture of spatiotemporal patterns within air pollution data with similar out-of-sample performance. Furthermore, the study delves into station-specific analyses, revealing variable model performance contingent on localised conditions. Model interpretation, facilitated by parametric coefficient analysis and partial dependence plots, unveils consistent associations between predictor variables and PM$_{2.5}$ concentrations. Despite nuanced variations in modelling spatiotemporal correlations, all models effectively accounted for the underlying dependence. In summary, this study underscores the efficacy of conventional techniques in modelling correlated spatiotemporal data, concurrently highlighting the complementary potential of Machine Learning and classical statistical approaches.

We propose reinforcement learning to control the dynamical self-assembly of the dodecagonal quasicrystal (DDQC) from patchy particles. The patchy particles have anisotropic interactions with other particles and form DDQC. However, their structures at steady states are significantly influenced by the kinetic pathways of their structural formation. We estimate the best policy of temperature control trained by the Q-learning method and demonstrate that we can generate DDQC with few defects using the estimated policy. The temperature schedule obtained by reinforcement learning can reproduce the desired structure more efficiently than the conventional pre-fixed temperature schedule, such as annealing. To clarify the success of the learning, we also analyse a simple model describing the kinetics of structural changes through the motion in a triple-well potential. We have found that reinforcement learning autonomously discovers the critical temperature at which structural fluctuations enhance the chance of forming a globally stable state. The estimated policy guides the system toward the critical temperature to assist the formation of DDQC.

A challenging category of robotics problems arises when sensing incurs substantial costs. This paper examines settings in which a robot wishes to limit its observations of state, for instance, motivated by specific considerations of energy management, stealth, or implicit coordination. We formulate the problem of planning under uncertainty when the robot's observations are intermittent but their timing is known via a pre-declared schedule. After having established the appropriate notion of an optimal policy for such settings, we tackle the problem of joint optimization of the cumulative execution cost and the number of state observations, both in expectation under discounts. To approach this multi-objective optimization problem, we introduce an algorithm that can identify the Pareto front for a class of schedules that are advantageous in the discounted setting. The algorithm proceeds in an accumulative fashion, prepending additions to a working set of schedules and then computing incremental changes to the value functions. Because full exhaustive construction becomes computationally prohibitive for moderate-sized problems, we propose a filtering approach to prune the working set. Empirical results demonstrate that this filtering is effective at reducing computation while incurring only negligible reduction in quality. In summarizing our findings, we provide a characterization of the run-time vs quality trade-off involved.

In statistics, it is common to encounter multi-modal and non-smooth likelihood (or objective function) maximization problems, where the parameters have known upper and lower bounds. This paper proposes a novel derivative-free global optimization technique that can be used to solve those problems even when the objective function is not known explicitly or its derivatives are difficult or expensive to obtain. The technique is based on the pattern search algorithm, which has been shown to be effective for black-box optimization problems. The proposed algorithm works by iteratively generating new solutions from the current solution. The new solutions are generated by making movements along the coordinate axes of the constrained sample space. Before making a jump from the current solution to a new solution, the objective function is evaluated at several neighborhood points around the current solution. The best solution point is then chosen based on the objective function values at those points. Parallel threading can be used to make the algorithm more scalable. The performance of the proposed method is evaluated by optimizing up to 5000-dimensional multi-modal benchmark functions. The proposed algorithm is shown to be up to 40 and 368 times faster than genetic algorithm (GA) and simulated annealing (SA), respectively. The proposed method is also used to estimate the optimal biomarker combination from Alzheimer's disease data by maximizing the empirical estimates of the area under the receiver operating characteristic curve (AUC), outperforming the contextual popular alternative, known as step-down algorithm.

Model order reduction provides low-complexity high-fidelity surrogate models that allow rapid and accurate solutions of parametric differential equations. The development of reduced order models for parametric nonlinear Hamiltonian systems is challenged by several factors: (i) the geometric structure encoding the physical properties of the dynamics; (ii) the slowly decaying Kolmogorov n-width of conservative dynamics; (iii) the gradient structure of the nonlinear flow velocity; (iv) high variations in the numerical rank of the state as a function of time and parameters. We propose to address these aspects via a structure-preserving adaptive approach that combines symplectic dynamical low-rank approximation with adaptive gradient-preserving hyper-reduction and parameters sampling. Additionally, we propose to vary in time the dimensions of both the reduced basis space and the hyper-reduction space by monitoring the quality of the reduced solution via an error indicator related to the projection error of the Hamiltonian vector field. The resulting adaptive hyper-reduced models preserve the geometric structure of the Hamiltonian flow, do not rely on prior information on the dynamics, and can be solved at a cost that is linear in the dimension of the full order model and linear in the number of test parameters. Numerical experiments demonstrate the improved performances of the fully adaptive models compared to the original and reduced models.

Graph-centric artificial intelligence (graph AI) has achieved remarkable success in modeling interacting systems prevalent in nature, from dynamical systems in biology to particle physics. The increasing heterogeneity of data calls for graph neural architectures that can combine multiple inductive biases. However, combining data from various sources is challenging because appropriate inductive bias may vary by data modality. Multimodal learning methods fuse multiple data modalities while leveraging cross-modal dependencies to address this challenge. Here, we survey 140 studies in graph-centric AI and realize that diverse data types are increasingly brought together using graphs and fed into sophisticated multimodal models. These models stratify into image-, language-, and knowledge-grounded multimodal learning. We put forward an algorithmic blueprint for multimodal graph learning based on this categorization. The blueprint serves as a way to group state-of-the-art architectures that treat multimodal data by choosing appropriately four different components. This effort can pave the way for standardizing the design of sophisticated multimodal architectures for highly complex real-world problems.

北京阿比特科技有限公司