亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Let $\mathcal{D}$ be a set family that is the solution domain of some combinatorial problem. The \emph{max-min diversification problem on $\mathcal{D}$} is the problem to select $k$ sets from $\mathcal{D}$ such that the Hamming distance between any two selected sets is at least $d$. FPT algorithms parameterized by $k,l:=\max_{D\in \mathcal{D}}|D|$ and $k,d$ have been actively studied recently for several specific domains. This paper provides unified algorithmic frameworks to solve this problem. Specifically, for each parameterization $k,l$ and $k,d$, we provide an FPT oracle algorithm for the max-min diversification problem using oracles related to $\mathcal{D}$. We then demonstrate that our frameworks generalize most of the existing domain-specific tractability results and provide the first FPT algorithms for several domains. Our main technical breakthrough is introducing the notion of \emph{max-distance sparsifier} of $\mathcal{D}$, a domain on which the max-min diversification problem is equivalent to the same problem on the original domain $\mathcal{D}$. The core of our framework is to design FPT oracle algorithms that construct a constant-size max-distance sparsifier of $\mathcal{D}$. Using max-distance sparsifiers, we provide FPT algorithms for the max-min and max-sum diversification problems on $\mathcal{D}$, as well as $k$-center and $k$-sum-of-radii clustering problems on $\mathcal{D}$, which are also natural problems in the context of diversification and have their own interests.

相關內容

FPT:International Conference on Field-Programmable Technology。 Explanation:現場可編程技術(shu)國際會(hui)議。 Publisher:IEEE。 SIT:

We show that, for every $k\geq 2$, $C_{2k}$-freeness can be decided in $O(n^{1-1/k})$ rounds in the Broadcast CONGEST model, by a deterministic algorithm. This (deterministic) round-complexity is optimal for $k=2$ up to logarithmic factors thanks to the lower bound for $C_4$-freeness by Drucker et al. [PODC 2014], which holds even for randomized algorithms. Moreover it matches the round-complexity of the best known randomized algorithms by Censor-Hillel et al. [DISC 2020] for $k\in\{3,4,5\}$, and by Fraigniaud et al. [PODC 2024] for $k\geq 6$. Our algorithm uses parallel BFS-explorations with deterministic selections of the set of paths that are forwarded at each round, in a way similar to what is done for the detection of odd-length cycles, by Korhonen and Rybicki [OPODIS 2017]. However, the key element in the design and analysis of our algorithm is a new combinatorial result bounding the ''local density'' of graphs without $2k$-cycles, which we believe is interesting on its own.

Language model approaches have recently been integrated into binary analysis tasks, such as function similarity detection and function signature recovery. These models typically employ a two-stage training process: pre-training via Masked Language Modeling (MLM) on machine code and fine-tuning for specific tasks. While MLM helps to understand binary code structures, it ignores essential code characteristics, including control and data flow, which negatively affect model generalization. Recent work leverages domain-specific features (e.g., control flow graphs and dynamic execution traces) in transformer-based approaches to improve binary code semantic understanding. However, this approach involves complex feature engineering, a cumbersome and time-consuming process that can introduce predictive uncertainty when dealing with stripped or obfuscated code, leading to a performance drop. In this paper, we introduce ProTST, a novel transformer-based methodology for binary code embedding. ProTST employs a hierarchical training process based on a unique tree-like structure, where knowledge progressively flows from fundamental tasks at the root to more specialized tasks at the leaves. This progressive teacher-student paradigm allows the model to build upon previously learned knowledge, resulting in high-quality embeddings that can be effectively leveraged for diverse downstream binary analysis tasks. The effectiveness of ProTST is evaluated in seven binary analysis tasks, and the results show that ProTST yields an average validation score (F1, MRR, and Recall@1) improvement of 14.8% compared to traditional two-stage training and an average validation score of 10.7% compared to multimodal two-stage frameworks.

We consider an economic environment with one buyer and one seller. For a bundle $(t,q)\in [0,\infty[\times [0,1]=\mathbb{Z}$, $q$ refers to the winning probability of an object, and $t$ denotes the payment that the buyer makes. We consider continuous and monotone preferences on $\mathbb{Z}$ as the primitives of the buyer. These preferences can incorporate both quasilinear and non-quasilinear preferences, and multidimensional pay-off relevant parameters. We define rich single-crossing subsets of this class and characterize strategy-proof mechanisms by using monotonicity of the mechanisms and continuity of the indirect preference correspondences. We also provide a computationally tractable optimization program to compute the optimal mechanism for mechanisms with finite range. We do not use revenue equivalence and virtual valuations as tools in our proofs. Our proof techniques bring out the geometric interaction between the single-crossing property and the positions of bundles $(t,q)$s in the space $\mathbb{Z}$. We also provide an extension of our analysis to an $n-$buyer environment, and to the situation where $q$ is a qualitative variable.

We study frequency domain electromagnetic scattering at a bounded, penetrable, and inhomogeneous obstacle $ \Omega \subset \mathbb{R}^3 $. From the Stratton-Chu integral representation, we derive a new representation formula when constant reference coefficients are given for the interior domain. The resulting integral representation contains the usual layer potentials, but also volume potentials on $\Omega$. Then it is possible to follow a single-trace approach to obtain boundary integral equations perturbed by traces of compact volume integral operators with weakly singular kernels. The coupled boundary and volume integral equations are discretized with a Galerkin approach with usual Curl-conforming and Div-conforming finite elements on the boundary and in the volume. Compression techniques and special quadrature rules for singular integrands are required for an efficient and accurate method. Numerical experiments provide evidence that our new formulation enjoys promising properties.

Is there a fixed dimension $n$ such that translational tiling of $\mathbb{Z}^n$ with a monotile is undecidable? Several recent results support a positive answer to this question. Greenfeld and Tao disprove the periodic tiling conjecture by showing that an aperiodic monotile exists in sufficiently high dimension $n$ [Ann. Math. 200(2024), 301-363]. In another paper [to appear in J. Eur. Math. Soc.], they also show that if the dimension $n$ is part of the input, then the translational tiling for subsets of $\mathbb{Z}^n$ with one tile is undecidable. These two results are very strong pieces of evidence for the conjecture that translational tiling of $\mathbb{Z}^n$ with a monotile is undecidable, for some fixed $n$. This paper gives another supportive result for this conjecture by showing that translational tiling of the $4$-dimensional space with a set of three connected tiles is undecidable.

This work considers the problem of output-sensitive listing of occurrences of $2k$-cycles for fixed constant $k\geq 2$ in an undirected host graph with $m$ edges and $t$ $2k$-cycles. Recent work of Jin and Xu (and independently Abboud, Khoury, Leibowitz, and Safier) [STOC 2023] gives an $O(m^{4/3}+t)$ time algorithm for listing $4$-cycles, and recent work by Jin, Vassilevska Williams and Zhou [SOSA 2024] gives an $\widetilde{O}(n^2+t)$ time algorithm for listing $6$-cycles in $n$ node graphs. We focus on resolving the next natural question: obtaining listing algorithms for $6$-cycles in the sparse setting, i.e., in terms of $m$ rather than $n$. Previously, the best known result here is the better of Jin, Vassilevska Williams and Zhou's $\widetilde{O}(n^2+t)$ algorithm and Alon, Yuster and Zwick's $O(m^{5/3}+t)$ algorithm. We give an algorithm for listing $6$-cycles with running time $\widetilde{O}(m^{1.6}+t)$. Our algorithm is a natural extension of Dahlgaard, Knudsen and St\"ockel's [STOC 2017] algorithm for detecting a $2k$-cycle. Our main technical contribution is the analysis of the algorithm which involves a type of ``supersaturation'' lemma relating the number of $2k$-cycles in a bipartite graph to the sizes of the parts in the bipartition and the number of edges. We also give a simplified analysis of Dahlgaard, Knudsen and St\"ockel's $2k$-cycle detection algorithm (with a small polylogarithmic increase in the running time), which is helpful in analyzing our listing algorithm.

We study the problem of privately releasing an approximate minimum spanning tree (MST). Given a graph $G = (V, E, \vec{W})$ where $V$ is a set of $n$ vertices, $E$ is a set of $m$ undirected edges, and $ \vec{W} \in \mathbb{R}^{|E|} $ is an edge-weight vector, our goal is to publish an approximate MST under edge-weight differential privacy, as introduced by Sealfon in PODS 2016, where $V$ and $E$ are considered public and the weight vector is private. Our neighboring relation is $\ell_\infty$-distance on weights: for a sensitivity parameter $\Delta_\infty$, graphs $ G = (V, E, \vec{W}) $ and $ G' = (V, E, \vec{W}') $ are neighboring if $\|\vec{W}-\vec{W}'\|_\infty \leq \Delta_\infty$. Existing private MST algorithms face a trade-off, sacrificing either computational efficiency or accuracy. We show that it is possible to get the best of both worlds: With a suitable random perturbation of the input that does not suffice to make the weight vector private, the result of any non-private MST algorithm will be private and achieves a state-of-the-art error guarantee. Furthermore, by establishing a connection to Private Top-k Selection [Steinke and Ullman, FOCS '17], we give the first privacy-utility trade-off lower bound for MST under approximate differential privacy, demonstrating that the error magnitude, $\tilde{O}(n^{3/2})$, is optimal up to logarithmic factors. That is, our approach matches the time complexity of any non-private MST algorithm and at the same time achieves optimal error. We complement our theoretical treatment with experiments that confirm the practicality of our approach.

Treatment effects in regression discontinuity designs (RDDs) are often estimated using local regression methods. \cite{Hahn:01} demonstrated that the identification of the average treatment effect at the cutoff in RDDs relies on the unconfoundedness assumption and that, without this assumption, only the local average treatment effect at the cutoff can be identified. In this paper, we propose a semiparametric framework tailored for identifying the average treatment effect in RDDs, eliminating the need for the unconfoundedness assumption. Our approach globally conceptualizes the identification as a partially linear modeling problem, with the coefficient of a specified polynomial function of propensity score in the linear component capturing the average treatment effect. This identification result underpins our semiparametric inference for RDDs, employing the $P$-spline method to approximate the nonparametric function and establishing a procedure for conducting inference within this framework. Through theoretical analysis, we demonstrate that our global approach achieves a faster convergence rate compared to the local method. Monte Carlo simulations further confirm that the proposed method consistently outperforms alternatives across various scenarios. Furthermore, applications to real-world datasets illustrate that our global approach can provide more reliable inference for practical problems.

Surface parameterization is a fundamental concept in fields such as differential geometry and computer graphics. It involves mapping a surface in three-dimensional space onto a two-dimensional parameter space. This process allows for the systematic representation and manipulation of surfaces of complicated shapes by simplifying them into a manageable planar domain. In this paper, we propose a new iterative algorithm for computing the parameterization of simply connected open surfaces that achieves an optimal balance between angle and area distortions. We rigorously prove that the iteration in our algorithm converges globally, and numerical results demonstrate that the resulting mappings are bijective and effectively balance angular and area accuracy across various triangular meshes. Additionally, we present the practical usefulness of the proposed algorithm by applying it to represent surfaces as geometry images.

While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.

北京阿比特科技有限公司