亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the burgeoning domain of distributed quantum computing, achieving consensus amidst adversarial settings remains a pivotal challenge. We introduce an enhancement to the Quantum Byzantine Agreement (QBA) protocol, uniquely incorporating advanced error mitigation techniques: Twirled Readout Error Extinction (T-REx) and dynamical decoupling (DD). Central to this refined approach is the utilization of a Noisy Intermediate Scale Quantum (NISQ) source device for heightened performance. Extensive tests on both simulated and real-world quantum devices, notably IBM's quantum computer, provide compelling evidence of the effectiveness of our T-REx and DD adaptations in mitigating prevalent quantum channel errors. Subsequent to the entanglement distribution, our protocol adopts a verification method reminiscent of Quantum Key Distribution (QKD) schemes. The Commander then issues orders encoded in specific quantum states, like Retreat or Attack. In situations where received orders diverge, lieutenants engage in structured games to reconcile discrepancies. Notably, the frequency of these games is contingent upon the Commander's strategies and the overall network size. Our empirical findings underscore the enhanced resilience and effectiveness of the protocol in diverse scenarios. Nonetheless, scalability emerges as a concern with the growth of the network size. To sum up, our research illuminates the considerable potential of fortified quantum consensus systems in the NISQ era, highlighting the imperative for sustained research in bolstering quantum ecosystems.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡(luo)會議。 Publisher:IFIP。 SIT:

An information-theoretic confidential communication is achievable if the eavesdropper has a degraded channel compared to the legitimate receiver. In wireless channels, beamforming and artificial noise can enable such confidentiality. However, only distribution knowledge of the eavesdropper channels can be assumed. Moreover, the transmission of artificial noise can lead to an increased electromagnetic field (EMF) exposure, which depends on the considered location and can thus also be seen as a random variable. Hence, we optimize the $\varepsilon$-outage secrecy rate under a $\delta$-outage exposure constraint in a setup, where the base station (BS) is communicating to a user equipment (UE), while a single-antenna eavesdropper with Rayleigh distributed channels is present. Therefore, we calculate the secrecy outage probability (SOP) in closed-form. Based on this, we convexify the optimization problem and optimize the $\varepsilon$-outage secrecy rate iteratively. Numerical results show that for a moderate exposure constraint, artificial noise from the BS has a relatively large impact due to beamforming, while for a strict exposure constraint artificial noise from the UE is more important.

Multimodal intent recognition aims to leverage diverse modalities such as expressions, body movements and tone of speech to comprehend user's intent, constituting a critical task for understanding human language and behavior in real-world multimodal scenarios. Nevertheless, the majority of existing methods ignore potential correlations among different modalities and own limitations in effectively learning semantic features from nonverbal modalities. In this paper, we introduce a token-level contrastive learning method with modality-aware prompting (TCL-MAP) to address the above challenges. To establish an optimal multimodal semantic environment for text modality, we develop a modality-aware prompting module (MAP), which effectively aligns and fuses features from text, video and audio modalities with similarity-based modality alignment and cross-modality attention mechanism. Based on the modality-aware prompt and ground truth labels, the proposed token-level contrastive learning framework (TCL) constructs augmented samples and employs NT-Xent loss on the label token. Specifically, TCL capitalizes on the optimal textual semantic insights derived from intent labels to guide the learning processes of other modalities in return. Extensive experiments show that our method achieves remarkable improvements compared to state-of-the-art methods. Additionally, ablation analyses demonstrate the superiority of the modality-aware prompt over the handcrafted prompt, which holds substantial significance for multimodal prompt learning. The codes are released at //github.com/thuiar/TCL-MAP.

This research explores a novel approach in the realm of learning-based image registration, addressing the limitations inherent in weakly-supervised and unsupervised methods. Weakly-supervised techniques depend heavily on scarce labeled data, while unsupervised strategies rely on indirect measures of accuracy through image similarity. Notably, traditional supervised learning is not utilized due to the lack of precise deformation ground-truth in medical imaging. Our study introduces a unique training framework with On-the-Fly Guidance (OFG) to enhance existing models. This framework, during training, generates pseudo-ground truth a few steps ahead by refining the current deformation prediction with our custom optimizer. This pseudo-ground truth then serves to directly supervise the model in a supervised learning context. The process involves optimizing the predicted deformation with a limited number of steps, ensuring training efficiency and setting achievable goals for each training phase. OFG notably boosts the precision of existing image registration techniques while maintaining the speed of learning-based methods. We assessed our approach using various pseudo-ground truth generation strategies, including predictions and optimized outputs from established registration models. Our experiments spanned three benchmark datasets and three cutting-edge models, with OFG demonstrating significant and consistent enhancements, surpassing previous state-of-the-arts in the field. OFG offers an easily integrable plug-and-play solution to enhance the training effectiveness of learning-based image registration models. Code at //github.com/miraclefactory/on-the-fly-guidance.

Determining the types of neurons within a nervous system plays a significant role in the analysis of brain connectomics and the investigation of neurological diseases. However, the efficiency of utilizing anatomical, physiological, or molecular characteristics of neurons is relatively low and costly. With the advancements in electron microscopy imaging and analysis techniques for brain tissue, we are able to obtain whole-brain connectome consisting neuronal high-resolution morphology and connectivity information. However, few models are built based on such data for automated neuron classification. In this paper, we propose NeuNet, a framework that combines morphological information of neurons obtained from skeleton and topological information between neurons obtained from neural circuit. Specifically, NeuNet consists of three components, namely Skeleton Encoder, Connectome Encoder, and Readout Layer. Skeleton Encoder integrates the local information of neurons in a bottom-up manner, with a one-dimensional convolution in neural skeleton's point data; Connectome Encoder uses a graph neural network to capture the topological information of neural circuit; finally, Readout Layer fuses the above two information and outputs classification results. We reprocess and release two new datasets for neuron classification task from volume electron microscopy(VEM) images of human brain cortex and Drosophila brain. Experiments on these two datasets demonstrated the effectiveness of our model with accuracy of 0.9169 and 0.9363, respectively. Code and data are available at: //github.com/WHUminghui/NeuNet.

Generative models can serve as surrogates for some real data sources by creating synthetic training datasets, but in doing so they may transfer biases to downstream tasks. We focus on protecting quality and diversity when generating synthetic training datasets. We propose quality-diversity generative sampling (QDGS), a framework for sampling data uniformly across a user-defined measure space, despite the data coming from a biased generator. QDGS is a model-agnostic framework that uses prompt guidance to optimize a quality objective across measures of diversity for synthetically generated data, without fine-tuning the generative model. Using balanced synthetic datasets generated by QDGS, we first debias classifiers trained on color-biased shape datasets as a proof-of-concept. By applying QDGS to facial data synthesis, we prompt for desired semantic concepts, such as skin tone and age, to create an intersectional dataset with a combined blend of visual features. Leveraging this balanced data for training classifiers improves fairness while maintaining accuracy on facial recognition benchmarks. Code available at: //github.com/Cylumn/qd-generative-sampling

The simulation of plasma physics is computationally expensive because the underlying physical system is of high dimensions, requiring three spatial dimensions and three velocity dimensions. One popular numerical approach is Particle-In-Cell (PIC) methods owing to its ease of implementation and favorable scalability in high-dimensional problems. An unfortunate drawback of the method is the introduction of statistical noise resulting from the use of finitely many particles. In this paper we examine the application of the Smoothness-Increasing Accuracy-Conserving (SIAC) family of convolution kernel filters as denoisers for moment data arising from PIC simulations. We show that SIAC filtering is a promising tool to denoise PIC data in the physical space as well as capture the appropriate scales in the Fourier space. Furthermore, we demonstrate how the application of the SIAC technique reduces the amount of information necessary in the computation of quantities of interest in plasma physics such as the Bohm speed.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

In semi-supervised domain adaptation, a few labeled samples per class in the target domain guide features of the remaining target samples to aggregate around them. However, the trained model cannot produce a highly discriminative feature representation for the target domain because the training data is dominated by labeled samples from the source domain. This could lead to disconnection between the labeled and unlabeled target samples as well as misalignment between unlabeled target samples and the source domain. In this paper, we propose a novel approach called Cross-domain Adaptive Clustering to address this problem. To achieve both inter-domain and intra-domain adaptation, we first introduce an adversarial adaptive clustering loss to group features of unlabeled target data into clusters and perform cluster-wise feature alignment across the source and target domains. We further apply pseudo labeling to unlabeled samples in the target domain and retain pseudo-labels with high confidence. Pseudo labeling expands the number of ``labeled" samples in each class in the target domain, and thus produces a more robust and powerful cluster core for each class to facilitate adversarial learning. Extensive experiments on benchmark datasets, including DomainNet, Office-Home and Office, demonstrate that our proposed approach achieves the state-of-the-art performance in semi-supervised domain adaptation.

Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司