亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Zero-Shot Neural Architecture Search (NAS) approaches propose novel training-free metrics called zero-shot proxies to substantially reduce the search time compared to the traditional training-based NAS. Despite the success on image classification, the effectiveness of zero-shot proxies is rarely evaluated on complex vision tasks such as semantic segmentation and object detection. Moreover, existing zero-shot proxies are shown to be biased towards certain model characteristics which restricts their broad applicability. In this paper, we empirically study the bias of state-of-the-art (SOTA) zero-shot proxy ZiCo across multiple vision tasks and observe that ZiCo is biased towards thinner and deeper networks, leading to sub-optimal architectures. To solve the problem, we propose a novel bias correction on ZiCo, called ZiCo-BC. Our extensive experiments across various vision tasks (image classification, object detection and semantic segmentation) show that our approach can successfully search for architectures with higher accuracy and significantly lower latency on Samsung Galaxy S10 devices.

相關內容

We propose VQ-NeRF, a two-branch neural network model that incorporates Vector Quantization (VQ) to decompose and edit reflectance fields in 3D scenes. Conventional neural reflectance fields use only continuous representations to model 3D scenes, despite the fact that objects are typically composed of discrete materials in reality. This lack of discretization can result in noisy material decomposition and complicated material editing. To address these limitations, our model consists of a continuous branch and a discrete branch. The continuous branch follows the conventional pipeline to predict decomposed materials, while the discrete branch uses the VQ mechanism to quantize continuous materials into individual ones. By discretizing the materials, our model can reduce noise in the decomposition process and generate a segmentation map of discrete materials. Specific materials can be easily selected for further editing by clicking on the corresponding area of the segmentation outcomes. Additionally, we propose a dropout-based VQ codeword ranking strategy to predict the number of materials in a scene, which reduces redundancy in the material segmentation process. To improve usability, we also develop an interactive interface to further assist material editing. We evaluate our model on both computer-generated and real-world scenes, demonstrating its superior performance. To the best of our knowledge, our model is the first to enable discrete material editing in 3D scenes.

We propose MFT -- Multi-Flow dense Tracker -- a novel method for dense, pixel-level, long-term tracking. The approach exploits optical flows estimated not only between consecutive frames, but also for pairs of frames at logarithmically spaced intervals. It selects the most reliable sequence of flows on the basis of estimates of its geometric accuracy and the probability of occlusion, both provided by a pre-trained CNN. We show that MFT achieves competitive performance on the TAP-Vid benchmark, outperforming baselines by a significant margin, and tracking densely orders of magnitude faster than the state-of-the-art point-tracking methods. The method is insensitive to medium-length occlusions and it is robustified by estimating flow with respect to the reference frame, which reduces drift.

Large Language Models (LLMs) are revolutionizing the field of computing education with their powerful code-generating capabilities. Traditional pedagogical practices have focused on code writing tasks, but there is now a shift in importance towards code reading, comprehension and evaluation of LLM-generated code. Alongside this shift, an important new skill is emerging -- the ability to solve programming tasks by constructing good prompts for code-generating models. In this work we introduce a new type of programming exercise to hone this nascent skill: 'Prompt Problems'. Prompt Problems are designed to help students learn how to write effective prompts for AI code generators. A student solves a Prompt Problem by crafting a natural language prompt which, when provided as input to an LLM, outputs code that successfully solves a specified programming task. We also present a new web-based tool called Promptly which hosts a repository of Prompt Problems and supports the automated evaluation of prompt-generated code. We deploy Promptly for the first time in one CS1 and one CS2 course and describe our experiences, which include student perceptions of this new type of activity and their interactions with the tool. We find that students are enthusiastic about Prompt Problems, and appreciate how the problems engage their computational thinking skills and expose them to new programming constructs. We discuss ideas for the future development of new variations of Prompt Problems, and the need to carefully study their integration into classroom practice.

Prior work on Private Inference (PI)--inferences performed directly on encrypted input--has focused on minimizing a network's ReLUs, which have been assumed to dominate PI latency rather than FLOPs. Recent work has shown that FLOPs for PI can no longer be ignored and have high latency penalties. In this paper, we develop DeepReShape, a network redesign technique that tailors architectures to PI constraints, optimizing for both ReLUs and FLOPs for the first time. The {\em key insight} is that a strategic allocation of channels such that the network's ReLUs are aligned in their criticality order simultaneously optimizes ReLU and FLOPs efficiency. DeepReShape automates network development with an efficient process, and we call generated networks HybReNets. We evaluate DeepReShape using standard PI benchmarks and demonstrate a 2.1\% accuracy gain with a 5.2$\times$ runtime improvement at iso-ReLU on CIFAR-100 and an 8.7$\times$ runtime improvement at iso-accuracy on TinyImageNet. Furthermore, we demystify the input network selection in prior ReLU optimizations and shed light on the key network attributes enabling PI efficiency.

Latent Consistency Models (LCMs) have achieved impressive performance in accelerating text-to-image generative tasks, producing high-quality images with minimal inference steps. LCMs are distilled from pre-trained latent diffusion models (LDMs), requiring only ~32 A100 GPU training hours. This report further extends LCMs' potential in two aspects: First, by applying LoRA distillation to Stable-Diffusion models including SD-V1.5, SSD-1B, and SDXL, we have expanded LCM's scope to larger models with significantly less memory consumption, achieving superior image generation quality. Second, we identify the LoRA parameters obtained through LCM distillation as a universal Stable-Diffusion acceleration module, named LCM-LoRA. LCM-LoRA can be directly plugged into various Stable-Diffusion fine-tuned models or LoRAs without training, thus representing a universally applicable accelerator for diverse image generation tasks. Compared with previous numerical PF-ODE solvers such as DDIM, DPM-Solver, LCM-LoRA can be viewed as a plug-in neural PF-ODE solver that possesses strong generalization abilities. Project page: //github.com/luosiallen/latent-consistency-model.

We present a novel method for reconstructing 3D objects from a single RGB image. Our method leverages the latest image generation models to infer the hidden 3D structure while remaining faithful to the input image. While existing methods obtain impressive results in generating 3D models from text prompts, they do not provide an easy approach for conditioning on input RGB data. Na\"ive extensions of these methods often lead to improper alignment in appearance between the input image and the 3D reconstructions. We address these challenges by introducing Image Constrained Radiance Fields (ConRad), a novel variant of neural radiance fields. ConRad is an efficient 3D representation that explicitly captures the appearance of an input image in one viewpoint. We propose a training algorithm that leverages the single RGB image in conjunction with pretrained Diffusion Models to optimize the parameters of a ConRad representation. Extensive experiments show that ConRad representations can simplify preservation of image details while producing a realistic 3D reconstruction. Compared to existing state-of-the-art baselines, we show that our 3D reconstructions remain more faithful to the input and produce more consistent 3D models while demonstrating significantly improved quantitative performance on a ShapeNet object benchmark.

We propose to pre-train a unified language model for both autoencoding and partially autoregressive language modeling tasks using a novel training procedure, referred to as a pseudo-masked language model (PMLM). Given an input text with masked tokens, we rely on conventional masks to learn inter-relations between corrupted tokens and context via autoencoding, and pseudo masks to learn intra-relations between masked spans via partially autoregressive modeling. With well-designed position embeddings and self-attention masks, the context encodings are reused to avoid redundant computation. Moreover, conventional masks used for autoencoding provide global masking information, so that all the position embeddings are accessible in partially autoregressive language modeling. In addition, the two tasks pre-train a unified language model as a bidirectional encoder and a sequence-to-sequence decoder, respectively. Our experiments show that the unified language models pre-trained using PMLM achieve new state-of-the-art results on a wide range of natural language understanding and generation tasks across several widely used benchmarks.

Retrieving object instances among cluttered scenes efficiently requires compact yet comprehensive regional image representations. Intuitively, object semantics can help build the index that focuses on the most relevant regions. However, due to the lack of bounding-box datasets for objects of interest among retrieval benchmarks, most recent work on regional representations has focused on either uniform or class-agnostic region selection. In this paper, we first fill the void by providing a new dataset of landmark bounding boxes, based on the Google Landmarks dataset, that includes $94k$ images with manually curated boxes from $15k$ unique landmarks. Then, we demonstrate how a trained landmark detector, using our new dataset, can be leveraged to index image regions and improve retrieval accuracy while being much more efficient than existing regional methods. In addition, we further introduce a novel regional aggregated selective match kernel (R-ASMK) to effectively combine information from detected regions into an improved holistic image representation. R-ASMK boosts image retrieval accuracy substantially at no additional memory cost, while even outperforming systems that index image regions independently. Our complete image retrieval system improves upon the previous state-of-the-art by significant margins on the Revisited Oxford and Paris datasets. Code and data will be released.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

State-of-the-art Convolutional Neural Network (CNN) benefits a lot from multi-task learning (MTL), which learns multiple related tasks simultaneously to obtain shared or mutually related representations for different tasks. The most widely-used MTL CNN structure is based on an empirical or heuristic split on a specific layer (e.g., the last convolutional layer) to minimize different task-specific losses. However, this heuristic sharing/splitting strategy may be harmful to the final performance of one or multiple tasks. In this paper, we propose a novel CNN structure for MTL, which enables automatic feature fusing at every layer. Specifically, we first concatenate features from different tasks according to their channel dimension, and then formulate the feature fusing problem as discriminative dimensionality reduction. We show that this discriminative dimensionality reduction can be done by 1x1 Convolution, Batch Normalization, and Weight Decay in one CNN, which we refer to as Neural Discriminative Dimensionality Reduction (NDDR). We perform ablation analysis in details for different configurations in training the network. The experiments carried out on different network structures and different task sets demonstrate the promising performance and desirable generalizability of our proposed method.

北京阿比特科技有限公司