In this paper, we study the stability and convergence of a fully discrete finite difference scheme for the initial value problem associated with the Korteweg-De Vries (KdV) equation. We employ the Crank-Nicolson method for temporal discretization and establish that the scheme is $L^2$-conservative. The convergence analysis reveals that utilizing inherent Kato's local smoothing effect, the proposed scheme converges to a classical solution for sufficiently regular initial data $u_0 \in H^{3}(\mathbb{R})$ and to a weak solution in $L^2(0,T;L^2_{\text{loc}}(\mathbb{R}))$ for non-smooth initial data $u_0 \in L^2(\mathbb{R})$. Optimal convergence rates in both time and space for the devised scheme are derived. The theoretical results are justified through several numerical illustrations.
This paper studies the convergence of a spatial semidiscretization of a three-dimensional stochastic Allen-Cahn equation with multiplicative noise. For non-smooth initial values, the regularity of the mild solution is investigated, and an error estimate is derived with the spatial $ L^2 $-norm. For smooth initial values, two error estimates with the general spatial $ L^q $-norms are established.
In this paper, we study the Boltzmann equation with uncertainties and prove that the spectral convergence of the semi-discretized numerical system holds in a combined velocity and random space, where the Fourier-spectral method is applied for approximation in the velocity space whereas the generalized polynomial chaos (gPC)-based stochastic Galerkin (SG) method is employed to discretize the random variable. Our proof is based on a delicate energy estimate for showing the well-posedness of the numerical solution as well as a rigorous control of its negative part in our well-designed functional space that involves high-order derivatives of both the velocity and random variables. This paper rigorously justifies the statement proposed in [Remark 4.4, J. Hu and S. Jin, J. Comput. Phys., 315 (2016), pp. 150-168].
In this study, we explore data assimilation for the Stochastic Camassa-Holm equation through the application of the particle filtering framework. Specifically, our approach integrates adaptive tempering, jittering, and nudging techniques to construct an advanced particle filtering system. All filtering processes are executed utilizing ensemble parallelism. We conduct extensive numerical experiments across various scenarios of the Stochastic Camassa-Holm model with transport noise and viscosity to examine the impact of different filtering procedures on the performance of the data assimilation process. Our analysis focuses on how observational data and the data assimilation step influence the accuracy and uncertainty of the obtained results.
In this paper we are concerned with restricted additive Schwarz with local impedance transformation conditions for a family of Helmholtz problems in two dimensions. These problems are discretized by the finite element method with conforming nodal finite elements. We design and analyze a new adaptive coarse space for this kind of restricted additive Schwarz method. This coarse space is spanned by some eigenvalue functions of local generalized eigenvalue problems, which are defined by weighted positive semi-definite bilinear forms on subspaces consisting of local discrete Helmholtz-harmonic functions from impedance boundary data. We proved that a two-level hybrid Schwarz preconditioner with the proposed coarse space possesses uniformly convergence independent of the mesh size, the subdomain size and the wave numbers under suitable assumptions. We also introduce an economic coarse space to avoid solving generalized eigenvalue problems. Numerical experiments confirm the theoretical results.
In this paper, we propose an adaptive finite element method for computing the first eigenpair of the p-Laplacian problem. We prove that starting from a fine initial mesh our proposed adaptive algorithm produces a sequence of discrete first eigenvalues that converges to the first eigenvalue of the continuous problem and the distance between discrete eigenfunctions and the normalized eigenfunction set with respect to the first eigenvalue in $W^{1,p}$-norm also tends to zero. Extensive numerical examples are provided to show the effectiveness and efficiency.
In this paper we introduce and analyse, from a game theoretical perspective, several multi-agent or multi-item continuous review inventory models in which the buyers are exempted from ordering costs if the price of their orders is greater than or equal to a certain amount. For all models we obtain the optimal ordering policy. We first analyse a simple model with one firm and one item. Then, we study a model with one firm and several items, for which we design a procedure based on cooperative game theory to evaluate the impact of each item on the total cost. Then, we deal with a model with several firms and one item for each firm, for which we characterise a rule to allocate the total cost among the firms in a coalitionally stable way. Finally, we discuss a model with several firms and several items, for which we characterise a rule to allocate the total cost among the firms in a coalitionally stable way and to evaluate the impact of each item on the cost that would be payable to each firm when using the allocation rule. All the concepts and results of this article are illustrated using data from a case study.
In this paper we formally define the hierarchical clustering network problem (HCNP) as the problem to find a good hierarchical partition of a network. This new problem focuses on the dynamic process of the clustering rather than on the final picture of the clustering process. To address it, we introduce a new ierarchical clustering algorithm in networks, based on a new shortest path betweenness measure. To calculate it, the communication between each pair of nodes is weighed by he importance of the nodes that establish this communication. The weights or importance associated to each pair of nodes are calculated as the Shapley value of a game, named as the linear modularity game. This new measure, (the node-game shortest path betweenness measure), is used to obtain a hierarchical partition of the network by eliminating the link with the highest value. To evaluate the performance of our algorithm, we introduce several criteria that allow us to compare different dendrograms of a network from two point of view: modularity and homogeneity. Finally, we propose a faster algorithm based on a simplification of the node-game shortest path betweenness measure, whose order is quadratic on sparse networks. This fast version is competitive from a computational point of view with other hierarchical fast algorithms, and, in general, it provides better results.
In this paper, we combine the Smolyak technique for multi-dimensional interpolation with the Filon-Clenshaw-Curtis (FCC) rule for one-dimensional oscillatory integration, to obtain a new Filon-Clenshaw-Curtis-Smolyak (FCCS) rule for oscillatory integrals with linear phase over the $d-$dimensional cube $[-1,1]^d$. By combining stability and convergence estimates for the FCC rule with error estimates for the Smolyak interpolation operator, we obtain an error estimate for the FCCS rule, consisting of the product of a Smolyak-type error estimate multiplied by a term that decreases with $\mathcal{O}(k^{-\tilde{d}})$, where $k$ is the wavenumber and $\tilde{d}$ is the number of oscillatory dimensions. If all dimensions are oscillatory, a higher negative power of $k$ appears in the estimate. As an application, we consider the forward problem of uncertainty quantification (UQ) for a one-space-dimensional Helmholtz problem with wavenumber $k$ and a random heterogeneous refractive index, depending in an affine way on $d$ i.i.d. uniform random variables. After applying a classical hybrid numerical-asymptotic approximation, expectations of functionals of the solution of this problem can be formulated as a sum of oscillatory integrals over $[-1,1]^d$, which we compute using the FCCS rule. We give numerical results for the FCCS rule and the UQ algorithm showing that accuracy improves when both $k$ and the order of the rule increase. We also give results for dimension-adaptive sparse grid FCCS quadrature showing its efficiency as dimension increases.
It is well-known that the Fourier-Galerkin spectral method has been a popular approach for the numerical approximation of the deterministic Boltzmann equation with spectral accuracy rigorously proved. In this paper, we will show that such a spectral convergence of the Fourier-Galerkin spectral method also holds for the Boltzmann equation with uncertainties arising from both collision kernel and initial condition. Our proof is based on newly-established spaces and norms that are carefully designed and take the velocity variable and random variables with their high regularities into account altogether. For future studies, this theoretical result will provide a solid foundation for further showing the convergence of the full-discretized system where both the velocity and random variables are discretized simultaneously.
In this paper, we provide an analysis of a recently proposed multicontinuum homogenization technique. The analysis differs from those used in classical homogenization methods for several reasons. First, the cell problems in multicontinuum homogenization use constraint problems and can not be directly substituted into the differential operator. Secondly, the problem contains high contrast that remains in the homogenized problem. The homogenized problem averages the microstructure while containing the small parameter. In this analysis, we first based on our previous techniques, CEM-GMsFEM, to define a CEM-downscaling operator that maps the multicontinuum quantities to an approximated microscopic solution. Following the regularity assumption of the multicontinuum quantities, we construct a downscaling operator and the homogenized multicontinuum equations using the information of linear approximation of the multicontinuum quantities. The error analysis is given by the residual estimate of the homogenized equations and the well-posedness assumption of the homogenized equations.