This paper focuses on perceiving and navigating 3D environments using echoes and RGB image. In particular, we perform depth estimation by fusing RGB image with echoes, received from multiple orientations. Unlike previous works, we go beyond the field of view of the RGB and estimate dense depth maps for substantially larger parts of the environment. We show that the echoes provide holistic and in-expensive information about the 3D structures complementing the RGB image. Moreover, we study how echoes and the wide field-of-view depth maps can be utilised in robot navigation. We compare the proposed methods against recent baselines using two sets of challenging realistic 3D environments: Replica and Matterport3D. The implementation and pre-trained models will be made publicly available.
In this paper, we introduce a novel convex formulation that seamlessly integrates the Material Point Method (MPM) with articulated rigid body dynamics in frictional contact scenarios. We extend the linear corotational hyperelastic model into the realm of elastoplasticity and include an efficient return mapping algorithm. This approach is particularly effective for MPM simulations involving significant deformation and topology changes, while preserving the convexity of the optimization problem. Our method ensures global convergence, enabling the use of large simulation time steps without compromising robustness. We have validated our approach through rigorous testing and performance evaluations, highlighting its superior capabilities in managing complex simulations relevant to robotics. Compared to previous MPM based robotic simulators, our method significantly improves the stability of contact resolution -- a critical factor in robot manipulation tasks. We make our method available in the open-source robotics toolkit, Drake.
This paper aims to clearly distinguish between Stochastic Gradient Descent with Momentum (SGDM) and Adam in terms of their convergence rates. We demonstrate that Adam achieves a faster convergence compared to SGDM under the condition of non-uniformly bounded smoothness. Our findings reveal that: (1) in deterministic environments, Adam can attain the known lower bound for the convergence rate of deterministic first-order optimizers, whereas the convergence rate of Gradient Descent with Momentum (GDM) has higher order dependence on the initial function value; (2) in stochastic setting, Adam's convergence rate upper bound matches the lower bounds of stochastic first-order optimizers, considering both the initial function value and the final error, whereas there are instances where SGDM fails to converge with any learning rate. These insights distinctly differentiate Adam and SGDM regarding their convergence rates. Additionally, by introducing a novel stopping-time based technique, we further prove that if we consider the minimum gradient norm during iterations, the corresponding convergence rate can match the lower bounds across all problem hyperparameters. The technique can also help proving that Adam with a specific hyperparameter scheduler is parameter-agnostic, which hence can be of independent interest.
This paper explores the pressing issue of risk assessment in Large Language Models (LLMs) as they become increasingly prevalent in various applications. Focusing on how reward models, which are designed to fine-tune pretrained LLMs to align with human values, perceive and categorize different types of risks, we delve into the challenges posed by the subjective nature of preference-based training data. By utilizing the Anthropic Red-team dataset, we analyze major risk categories, including Information Hazards, Malicious Uses, and Discrimination/Hateful content. Our findings indicate that LLMs tend to consider Information Hazards less harmful, a finding confirmed by a specially developed regression model. Additionally, our analysis shows that LLMs respond less stringently to Information Hazards compared to other risks. The study further reveals a significant vulnerability of LLMs to jailbreaking attacks in Information Hazard scenarios, highlighting a critical security concern in LLM risk assessment and emphasizing the need for improved AI safety measures.
This paper aims to improve the average response time for naval accidents in the North and Baltic Sea. To do this we optimize the strategic distribution of the vessel fleet used by the Deutsche Gesellschaft zur Rettung Schiffbr\"uchiger (German Maritime Search and Rescue Service) (DGzRS) across several home stations. Based on these locations, in case of an incoming distress call the vessel with the lowest response time is dispatched. A particularity of the region considered is the fact that due to low tide, at predictable times some vessels and stations are not operational. In our work, we build a corresponding mathematical model for the allocation of rescue crafts to multiple stations. Thereafter, we show that the problem is NP-hard. Next, we provide an Integer Programming (IP) formulation. Finally, we propose several methods of simplifying the model and do a case study to compare their effectiveness. For this, we generate test instances based on real-world data.
Despite the promise of RLHF in aligning LLMs with human preferences, it often leads to superficial alignment, prioritizing stylistic changes over improving downstream performance of LLMs. Underspecified preferences could obscure directions to align the models. Lacking exploration restricts identification of desirable outputs to improve the models. To overcome these challenges, we propose a novel framework: Reinforcement Learning from Reflective Feedback (RLRF), which leverages fine-grained feedback based on detailed criteria to improve the core capabilities of LLMs. RLRF employs a self-reflection mechanism to systematically explore and refine LLM responses, then fine-tuning the models via a RL algorithm along with promising responses. Our experiments across Just-Eval, Factuality, and Mathematical Reasoning demonstrate the efficacy and transformative potential of RLRF beyond superficial surface-level adjustment.
This paper presents our approach for the VA (Valence-Arousal) estimation task in the ABAW6 competition. We devised a comprehensive model by preprocessing video frames and audio segments to extract visual and audio features. Through the utilization of Temporal Convolutional Network (TCN) modules, we effectively captured the temporal and spatial correlations between these features. Subsequently, we employed a Transformer encoder structure to learn long-range dependencies, thereby enhancing the model's performance and generalization ability. Our method leverages a multimodal data fusion approach, integrating pre-trained audio and video backbones for feature extraction, followed by TCN-based spatiotemporal encoding and Transformer-based temporal information capture. Experimental results demonstrate the effectiveness of our approach, achieving competitive performance in VA estimation on the AffWild2 dataset.
Large language models (LLMs) can solve problems step-by-step. While this chain-of-thought (CoT) reasoning boosts LLMs' performance, it is unclear if LLMs \textit{know} when to use CoT and whether those CoT are always necessary to answer the question. This paper shows that LLMs tend to generate redundant calculations and reasoning on a manually constructed math QA dataset, GSM8K-Zero. GSM8K-Zero is constructed such that the questions can be answered without any calculations, but LLMs, including Llama-2 models and Claude-2, tend to generate lengthy and unnecessary calculations to answer the questions. We also conduct experiments to explain why LLMs generate redundant calculations and reasonings. GSM8K-Zero is publicly available at //github.com/d223302/Over-Reasoning-of-LLMs and //huggingface.co/datasets/dcml0714/GSM8K-Zero.
As large language models (LLMs) like ChatGPT have gained traction, an increasing number of news websites have begun utilizing them to generate articles. However, not only can these language models produce factually inaccurate articles on reputable websites but disreputable news sites can utilize LLMs to mass produce misinformation. To begin to understand this phenomenon, we present one of the first large-scale studies of the prevalence of synthetic articles within online news media. To do this, we train a DeBERTa-based synthetic news detector and classify over 15.46 million articles from 3,074 misinformation and mainstream news websites. We find that between January 1, 2022, and May 1, 2023, the relative number of synthetic news articles increased by 57.3% on mainstream websites while increasing by 474% on misinformation sites. We find that this increase is largely driven by smaller less popular websites. Analyzing the impact of the release of ChatGPT using an interrupted-time-series, we show that while its release resulted in a marked increase in synthetic articles on small sites as well as misinformation news websites, there was not a corresponding increase on large mainstream news websites.
The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.
Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.