This spreading of prion proteins is at the basis of brain neurodegeneration. This paper deals with the numerical modelling of the misfolding process of $\alpha$-synuclein in Parkinson's disease. We introduce and analyze a discontinuous Galerkin method for the semi-discrete approximation of the Fisher-Kolmogorov (FK) equation that can be employed to model the process. We employ a discontinuous Galerkin method on polygonal and polyhedral grids (PolyDG) for space discretization, to accurately simulate the wavefronts typically observed in the prionic spreading and we prove stability and a priori error estimates. Next, we use a Crank-Nicolson scheme to advance in time. For the numerical verification of our numerical model, we first consider a manufactured solution, and then we consider a case with wavefront propagation in two-dimensional polygonal grids. Next, we carry out a simulation of $\alpha$-synuclein spreading in a two-dimensional brain slice in the sagittal plane with a polygonal agglomerated grid that takes full advantage of the flexibility of PolyDG approximation. Finally, we present a simulation in a three-dimensional geometry reconstructed from magnetic resonance images of a patient's brain.
In this paper, we revisit the bilevel optimization problem, in which the upper-level objective function is generally nonconvex and the lower-level objective function is strongly convex. Although this type of problem has been studied extensively, it still remains an open question how to achieve an ${O}(\epsilon^{-1.5})$ sample complexity in Hessian/Jacobian-free stochastic bilevel optimization without any second-order derivative computation. To fill this gap, we propose a novel Hessian/Jacobian-free bilevel optimizer named FdeHBO, which features a simple fully single-loop structure, a projection-aided finite-difference Hessian/Jacobian-vector approximation, and momentum-based updates. Theoretically, we show that FdeHBO requires ${O}(\epsilon^{-1.5})$ iterations (each using ${O}(1)$ samples and only first-order gradient information) to find an $\epsilon$-accurate stationary point. As far as we know, this is the first Hessian/Jacobian-free method with an ${O}(\epsilon^{-1.5})$ sample complexity for nonconvex-strongly-convex stochastic bilevel optimization.
Byzantine machine learning has garnered considerable attention in light of the unpredictable faults that can occur in large-scale distributed learning systems. The key to secure resilience against Byzantine machines in distributed learning is resilient aggregation mechanisms. Although abundant resilient aggregation rules have been proposed, they are designed in ad-hoc manners, imposing extra barriers on comparing, analyzing, and improving the rules across performance criteria. This paper studies near-optimal aggregation rules using clustering in the presence of outliers. Our outlier-robust clustering approach utilizes geometric properties of the update vectors provided by workers. Our analysis show that constant approximations to the 1-center and 1-mean clustering problems with outliers provide near-optimal resilient aggregators for metric-based criteria, which have been proven to be crucial in the homogeneous and heterogeneous cases respectively. In addition, we discuss two contradicting types of attacks under which no single aggregation rule is guaranteed to improve upon the naive average. Based on the discussion, we propose a two-phase resilient aggregation framework. We run experiments for image classification using a non-convex loss function. The proposed algorithms outperform previously known aggregation rules by a large margin with both homogeneous and heterogeneous data distributions among non-faulty workers. Code and appendix are available at //github.com/jerry907/AAAI24-RASHB.
Originating in Girard's Linear logic, Ehrhard and Regnier's Taylor expansion of $\lambda$-terms has been broadly used as a tool to approximate the terms of several variants of the $\lambda$-calculus. Many results arise from a Commutation theorem relating the normal form of the Taylor expansion of a term to its B\"ohm tree. This led us to consider extending this formalism to the infinitary $\lambda$-calculus, since the $\Lambda_{\infty}^{001}$ version of this calculus has B\"ohm trees as normal forms and seems to be the ideal framework to reformulate the Commutation theorem. We give a (co-)inductive presentation of $\Lambda_{\infty}^{001}$. We define a Taylor expansion on this calculus, and state that the infinitary $\beta$-reduction can be simulated through this Taylor expansion. The target language is the usual resource calculus, and in particular the resource reduction remains finite, confluent and terminating. Finally, we state the generalised Commutation theorem and use our results to provide simple proofs of some normalisation and confluence properties in the infinitary $\lambda$-calculus.
Causal discovery with latent variables is a crucial but challenging task. Despite the emergence of numerous methods aimed at addressing this challenge, they are not fully identified to the structure that two observed variables are influenced by one latent variable and there might be a directed edge in between. Interestingly, we notice that this structure can be identified through the utilization of higher-order cumulants. By leveraging the higher-order cumulants of non-Gaussian data, we provide an analytical solution for estimating the causal coefficients or their ratios. With the estimated (ratios of) causal coefficients, we propose a novel approach to identify the existence of a causal edge between two observed variables subject to latent variable influence. In case when such a causal edge exits, we introduce an asymmetry criterion to determine the causal direction. The experimental results demonstrate the effectiveness of our proposed method.
As in other estimation scenarios, likelihood based estimation in the normal mixture set-up is highly non-robust against model misspecification and presence of outliers (apart from being an ill-posed optimization problem). A robust alternative to the ordinary likelihood approach for this estimation problem is proposed which performs simultaneous estimation and data clustering and leads to subsequent anomaly detection. To invoke robustness, the methodology based on the minimization of the density power divergence (or alternatively, the maximization of the $\beta$-likelihood) is utilized under suitable constraints. An iteratively reweighted least squares approach has been followed in order to compute the proposed estimators for the component means (or equivalently cluster centers) and component dispersion matrices which leads to simultaneous data clustering. Some exploratory techniques are also suggested for anomaly detection, a problem of great importance in the domain of statistics and machine learning. The proposed method is validated with simulation studies under different set-ups; it performs competitively or better compared to the popular existing methods like K-medoids, TCLUST, trimmed K-means and MCLUST, especially when the mixture components (i.e., the clusters) share regions with significant overlap or outlying clusters exist with small but non-negligible weights (particularly in higher dimensions). Two real datasets are also used to illustrate the performance of the newly proposed method in comparison with others along with an application in image processing. The proposed method detects the clusters with lower misclassification rates and successfully points out the outlying (anomalous) observations from these datasets.
This study examines 4-bit quantization methods like GPTQ in large language models (LLMs), highlighting GPTQ's overfitting and limited enhancement in Zero-Shot tasks. While prior works merely focusing on zero-shot measurement, we extend task scope to more generative categories such as code generation and abstractive summarization, in which we found that INT4 quantization can significantly underperform. However, simply shifting to higher precision formats like FP6 has been particularly challenging, thus overlooked, due to poor performance caused by the lack of sophisticated integration and system acceleration strategies on current AI hardware. Our results show that FP6, even with a coarse-grain quantization scheme, performs robustly across various algorithms and tasks, demonstrating its superiority in accuracy and versatility. Notably, with the FP6 quantization, \codestar-15B model performs comparably to its FP16 counterpart in code generation, and for smaller models like the 406M it closely matches their baselines in summarization. Neither can be achieved by INT4. To better accommodate various AI hardware and achieve the best system performance, we propose a novel 4+2 design for FP6 to achieve similar latency to the state-of-the-art INT4 fine-grain quantization. With our design, FP6 can become a promising solution to the current 4-bit quantization methods used in LLMs.
Open-loop stable limit cycles are foundational to the dynamics of legged robots. They impart a self-stabilizing character to the robot's gait, thus alleviating the need for compute-heavy feedback-based gait correction. This paper proposes a general approach to rapidly generate limit cycles with explicit stability constraints for a given dynamical system. In particular, we pose the problem of open-loop limit cycle stability as a single-stage constrained-optimization problem (COP), and use Direct Collocation to transcribe it into a nonlinear program (NLP) with closed-form expressions for constraints, objectives, and their gradients. The COP formulations of stability are developed based (1) on the spectral radius of a discrete return map, and (2) on the spectral radius of the system's monodromy matrix, where the spectral radius is bounded using different constraint-satisfaction formulations of the eigenvalue problem. We compare the performance and solution qualities of each approach, but specifically highlight the Schur decomposition of the monodromy matrix as a formulation which boasts wider applicability through weaker assumptions and attractive numerical convergence properties. Moreover, we present results from our experiments on a spring-loaded inverted pendulum model of a robot, where our method generated actuation trajectories for open-loop stable hopping in under 2 seconds (on the Intel Core i7-6700K), and produced energy-minimizing actuation trajectories even under tight stability constraints.
Deep neural networks have demonstrated remarkable performance in various tasks. With a growing need for sparse deep learning, model compression techniques, especially pruning, have gained significant attention. However, conventional pruning techniques can inadvertently exacerbate algorithmic bias, resulting in unequal predictions. To address this, we define a fair pruning task where a sparse model is derived subject to fairness requirements. In particular, we propose a framework to jointly optimize the pruning mask and weight update processes with fairness constraints. This framework is engineered to compress models that maintain performance while ensuring fairness in a single execution. To this end, we formulate the fair pruning problem as a novel constrained bi-level optimization task and derive efficient and effective solving strategies. We design experiments spanning various datasets and settings to validate our proposed method. Our empirical analysis contrasts our framework with several mainstream pruning strategies, emphasizing our method's superiority in maintaining model fairness, performance, and efficiency.
Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.
We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.