Multiuser multiple-input multiple-output wireless communications systems have the potential to satisfy the performance requirements of fifth-generation and future wireless networks. In this context, cell-free (CF) systems, where the antennas are distributed over the area of interest, have attracted attention because of their potential to enhance the overall efficiency and throughput performance when compared to traditional networks based on cells. However, the performance of CF systems is degraded by imperfect channel state information (CSI). To mitigate the detrimental effects of imperfect CSI, we employ rate splitting (RS) - a multiple-access scheme. The RS approach divides the messages of the users into two separate common and private portions so that interference is managed robustly. Unlike prior works, where the impact of RS in CF systems remains unexamined, we propose a CF architecture that employs RS with linear precoders to address deteriorated CSI. We derive closed-form expressions to compute the sum-rate performance of the proposed RS-CF architecture. Our numerical experiments show that our RS-CF system outperforms existing systems in terms of sum-rate, obtaining up to $10$% higher gain.
Reconfigurable Intelligent Surfaces (RISs) are an emerging technology for future wireless communication systems, enabling improved coverage in an energy efficient manner. RISs are usually metasurfaces, constituting of two-dimensional arrangements of metamaterial elements, whose individual response is commonly modeled in the literature as an adjustable phase shifter. However, this model holds only for narrow communications, and when wideband transmissions are utilized, one has to account for the frequency selectivity of metamaterials, whose response follows a Lorentzian profile. In this paper, we consider the uplink of a wideband RIS-empowered multi-user Multiple-Input Multiple-Output (MIMO) wireless system with Orthogonal Frequency Division Multiplexing (OFDM) signaling, while accounting for the frequency selectivity of RISs. In particular, we focus on designing the controllable parameters dictating the Lorentzian response of each RIS metamaterial element in order to maximize the achievable sum-rate. We devise a scheme combining block coordinate descent with penalty dual decomposition to tackle the resulting challenging optimization framework. Our simulation results reveal the achievable rates one can achieve using realistically frequency selective RISs in wideband settings, and quantify the performance loss that occurs when using state-of-the-art methods which assume that the RIS elements behave as frequency-flat phase shifters.
With the increasing number of wireless communication systems and the demand for bandwidth, the wireless medium has become a congested and contested environment. Operating under such an environment brings several challenges, especially for military communication systems, which need to guarantee reliable communication while avoiding interfering with other friendly or neutral systems and denying the enemy systems of service. In this work, we investigate a novel application of Rate-Splitting Multiple Access(RSMA) for joint communications and jamming with a Multi-Carrier(MC) waveform in a multiantenna Cognitive Radio(CR) system. RSMA is a robust multiple access scheme for downlink multi-antenna wireless networks. RSMA relies on multi-antenna Rate-Splitting (RS) at the transmitter and Successive Interference Cancellation (SIC) at the receivers. Our aim is to simultaneously communicate with Secondary Users(SUs) and jam Adversarial Users(AUs) to disrupt their communications while limiting the interference to Primary Users(PUs) in a setting where all users perform broadband communications by MC waveforms in their respective networks. We consider the practical setting of imperfect CSI at transmitter(CSIT) for the SUs and PUs, and statistical CSIT for AUs. We formulate a problem to obtain optimal precoders which maximize the mutual information under interference and jamming power constraints. We propose an Alternating Optimization-Alternating Direction Method of Multipliers(AOADMM) based algorithm for solving the resulting non-convex problem. We perform an analysis based on Karush-Kuhn-Tucker conditions to determine the optimal jamming and interference power thresholds that guarantee the feasibility of problem and propose a practical algorithm to calculate the interference power threshold. By simulations, we show that RSMA achieves a higher sum-rate than Space Division Multiple Access(SDMA).
Millimeter wave (mmWave) is a key technology for fifth-generation (5G) and beyond communications. Hybrid beamforming has been proposed for large-scale antenna systems in mmWave communications. Existing hybrid beamforming designs based on infinite-resolution phase shifters (PSs) are impractical due to hardware cost and power consumption. In this paper, we propose an unsupervised-learning-based scheme to jointly design the analog precoder and combiner with low-resolution PSs for multiuser multiple-input multiple-output (MU-MIMO) systems. We transform the analog precoder and combiner design problem into a phase classification problem and propose a generic neural network architecture, termed the phase classification network (PCNet), capable of producing solutions of various PS resolutions. Simulation results demonstrate the superior sum-rate and complexity performance of the proposed scheme, as compared to state-of-the-art hybrid beamforming designs for the most commonly used low-resolution PS configurations.
Starting from first principles of wave propagation, we consider a multiple-input multiple-output (MIMO) representation of a communication system between two spatially-continuous volumes. This is the concept of holographic MIMO communications. The analysis takes into account the electromagnetic interference, generated by external sources, and the constraint on the physical radiated power. The electromagnetic MIMO model is particularized for a pair of parallel line segments in line-of-sight conditions. Inspired by orthogonal-frequency division-multiplexing, we assume that the spatially-continuous transmit currents and received fields are represented using the Fourier basis functions. In doing so, a wavenumber-division multiplexing (WDM) scheme is obtained, which is not optimal but can be efficiently implemented. The interplay among the different system parameters (e.g., transmission range, wavelength, and sizes of source and receiver) in terms of number of communication modes and level of interference among them is studied with conventional tools of linear systems theory. Due to the non-finite support (in the spatial domain) of the electromagnetic channel, WDM cannot provide non-interfering communication modes. The interference decreases as the receiver size grows, and goes to zero only asymptotically. Different digital processing architectures, operating in the wavenumber domain, are thus used to deal with the interference. The simplest implementation provides the same spectral efficiency of a singular-value decomposition architecture with water-filling when the receiver size is comparable to the transmission range. The developed framework is also used to represent a classical MIMO system and to make comparisons. It turns out that the latter achieves better performance only when a higher number of radio-frequency chains is used.
We consider the problem of estimating channel fading coefficients (modeled as a correlated Gaussian vector) via Downlink (DL) training and Uplink (UL) feedback in wideband FDD massive MIMO systems. Using rate-distortion theory, we derive optimal bounds on the achievable channel state estimation error in terms of the number of training pilots in DL ($\beta_{tr}$) and feedback dimension in UL ($\beta_{fb}$), with random, spatially isotropic pilots. It is shown that when the number of training pilots exceeds the channel covariance rank ($r$), the optimal rate-distortion feedback strategy achieves an estimation error decay of $\Theta (SNR^{-\alpha})$ in estimating the channel state, where $\alpha = min (\beta_{fb}/r , 1)$ is the so-called quality scaling exponent. We also discuss an "analog" feedback strategy, showing that it can achieve the optimal quality scaling exponent for a wide range of training and feedback dimensions with no channel covariance knowledge and simple signal processing at the user side. Our findings are supported by numerical simulations comparing various strategies in terms of channel state mean squared error and achievable ergodic sum-rate in DL with zero-forcing precoding.
We study the problem of unsourced random access (URA) over Rayleigh block-fading channels with a receiver equipped with multiple antennas. We employ multiple stages of orthogonal pilots, each of which is randomly picked from a codebook. In the proposed scheme, each user encodes its message using a polar code and appends it to the selected pilot sequences to construct its transmitted signal. Accordingly, the received signal consists of superposition of the users' signals each composed of multiple pilot parts and a polar coded part. We use an iterative approach for decoding the transmitted messages along with a suitable successive interference cancellation scheme. Performance of the proposed scheme is illustrated via extensive set of simulation results which show that it significantly outperforms the existing approaches for URA over multi-input multi-output fading channels.
In multiple-input multiple-output (MIMO) systems, the high-resolution channel information (CSI) is required at the base station (BS) to ensure optimal performance, especially in the case of multi-user MIMO (MU-MIMO) systems. In the absence of channel reciprocity in frequency division duplex (FDD) systems, the user needs to send the CSI to the BS. Often the large overhead associated with this CSI feedback in FDD systems becomes the bottleneck in improving the system performance. In this paper, we propose an AI-based CSI feedback based on an auto-encoder architecture that encodes the CSI at UE into a low-dimensional latent space and decodes it back at the BS by effectively reducing the feedback overhead while minimizing the loss during recovery. Our simulation results show that the AI-based proposed architecture outperforms the state-of-the-art high-resolution linear combination codebook using the DFT basis adopted in the 5G New Radio (NR) system.
In this paper, we consider the precoder design for downlink multiple-input multiple-output (MIMO) rate-splitting multiple access (RSMA) systems. The proposed scheme with simultaneous diagonalization (SD) decomposes the MIMO channel matrices of the users into scalar channels via higher-order generalized singular value decomposition for the common message (CM) and block diagonalization (BD) for the private messages, thereby enabling low-complexity element-by-element successive interference cancellation (SIC) and decoding at the receivers. Furthermore, the proposed SD MIMO-RSMA overcomes a critical limitation in RSMA systems, whereby the achievable rate of the CM is restricted by the users with weak effective MIMO channel for the CM, by excluding a subset of users from decoding the CM. We formulate a non-convex weighted sum rate (WSR) optimization problem for SD MIMO-RSMA and solve it via successive convex approximation to obtain a locally optimal solution. Our simulation results reveal that, for both perfect and imperfect CSI, the proposed SD MIMO-RSMA with user exclusion outperforms baseline MIMO-RSMA schemes and linear BD precoding.
We propose an Active Learning approach to image segmentation that exploits geometric priors to streamline the annotation process. We demonstrate this for both background-foreground and multi-class segmentation tasks in 2D images and 3D image volumes. Our approach combines geometric smoothness priors in the image space with more traditional uncertainty measures to estimate which pixels or voxels are most in need of annotation. For multi-class settings, we additionally introduce two novel criteria for uncertainty. In the 3D case, we use the resulting uncertainty measure to show the annotator voxels lying on the same planar patch, which makes batch annotation much easier than if they were randomly distributed in the volume. The planar patch is found using a branch-and-bound algorithm that finds a patch with the most informative instances. We evaluate our approach on Electron Microscopy and Magnetic Resonance image volumes, as well as on regular images of horses and faces. We demonstrate a substantial performance increase over state-of-the-art approaches.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.