Recently, $(\beta,\gamma)$-Chebyshev functions, as well as the corresponding zeros, have been introduced as a generalization of classical Chebyshev polynomials of the first kind and related roots. They consist of a family of orthogonal functions on a subset of $[-1,1]$, which indeed satisfies a three-term recurrence formula. In this paper we present further properties, which are proven to comply with various results about classical orthogonal polynomials. In addition, we prove a conjecture concerning the Lebesgue constant's behavior related to the roots of $(\beta,\gamma)$-Chebyshev functions in the corresponding orthogonality interval.
We study properties of a sample covariance estimate $\widehat \Sigma = (\mathbf{X}_1 \mathbf{X}_1^\top + \ldots + \mathbf{X}_n \mathbf{X}_n^\top) / n$, where $\mathbf{X}_1, \dots, \mathbf{X}_n$ are i.i.d. random elements in $\mathbb R^d$ with $\mathbb E \mathbf{X}_1 = \mathbf{0}$, $\mathbb E \mathbf{X}_1 \mathbf{X}_1^\top = \Sigma$. We derive dimension-free bounds on the squared Frobenius norm of $(\widehat\Sigma - \Sigma)$ under reasonable assumptions. For instance, we show that $| \|\widehat\Sigma - \Sigma\|_{\rm F}^2 - \mathbb E \|\widehat\Sigma - \Sigma\|_{\rm F}^2| = \mathcal O({\rm{Tr}}(\Sigma^2) / n)$ with overwhelming probability, which is a significant improvement over the existing results. This leads to a bound the ratio $\|\widehat\Sigma - \Sigma\|_{\rm F}^2 / \mathbb E \|\widehat\Sigma - \Sigma\|_{\rm F}^2$ with a sharp leading constant when the effective rank $\mathtt{r}(\Sigma) = {\rm Tr}(\Sigma) / \|\Sigma\|$ and $n / \mathtt{r}(\Sigma)^6$ tend to infinity: $\|\widehat\Sigma - \Sigma\|_{\rm F}^2 / \mathbb E \|\widehat\Sigma - \Sigma\|_{\rm F}^2 = 1 + \mathcal O(1 / \mathtt{r}(\Sigma))$.
A Las Vegas randomized algorithm is given to compute the Hermite normal form of a nonsingular integer matrix $A$ of dimension $n$. The algorithm uses quadratic integer multiplication and cubic matrix multiplication and has running time bounded by $O(n^3 (\log n + \log ||A||)^2(\log n)^2)$ bit operations, where $||A||= \max_{ij} |A_{ij}|$ denotes the largest entry of $A$ in absolute value. A variant of the algorithm that uses pseudo-linear integer multiplication is given that has running time $(n^3 \log ||A||)^{1+o(1)}$ bit operations, where the exponent $"+o(1)"$ captures additional factors $c_1 (\log n)^{c_2} (\log \log ||A||)^{c_3}$ for positive real constants $c_1,c_2,c_3$.
A storage code is an assignment of symbols to the vertices of a connected graph $G(V,E)$ with the property that the value of each vertex is a function of the values of its neighbors, or more generally, of a certain neighborhood of the vertex in $G$. In this work we introduce a new construction method of storage codes, enabling one to construct new codes from known ones via an interleaving procedure driven by resolvable designs. We also study storage codes on $\mathbb Z$ and ${\mathbb Z}^2$ (lines and grids), finding closed-form expressions for the capacity of several one and two-dimensional systems depending on their recovery set, using connections between storage codes, graphs, anticodes, and difference-avoiding sets.
We describe an efficient method for the approximation of functions using radial basis functions (RBFs), and extend this to a solver for boundary value problems on irregular domains. The method is based on RBFs with centers on a regular grid defined on a bounding box, with some of the centers outside the computational domain. The equation is discretized using collocation with oversampling, with collocation points inside the domain only, resulting in a rectangular linear system to be solved in a least squares sense. The goal of this paper is the efficient solution of that rectangular system. We show that the least squares problem splits into a regular part, which can be expedited with the FFT, and a low rank perturbation, which is treated separately with a direct solver. The rank of the perturbation is influenced by the irregular shape of the domain and by the weak enforcement of boundary conditions at points along the boundary. The solver extends the AZ algorithm which was previously proposed for function approximation involving frames and other overcomplete sets. The solver has near optimal log-linear complexity for univariate problems, and loses optimality for higher-dimensional problems but remains faster than a direct solver.
We study $L_2$-approximation problems in the worst case setting in the weighted Korobov spaces $H_{d,\a,{\bm \ga}}$ with parameters $1\ge \ga_1\ge \ga_2\ge \cdots\ge 0$ and $\frac1 2<\az_1\le \az_2\le \cdots$. We consider the worst case error of algorithms that use finitely many arbitrary continuous linear functionals. We discuss the strongly polynomial tractability (SPT), polynomial tractability (PT), and $(t_1,t_2)$-weak tractability ($(t_1,t_2)$-WT) for all $t_1>1$ and $t_2>0$ under the absolute or normalized error criterion. In particular, we obtain the matching necessary and sufficient condition for SPT or PT in terms of the parameters.
For a skew polynomial ring $R=A[X;\theta,\delta]$ where $A$ is a commutative frobenius ring, $\theta$ an endomorphism of $A$ and $\delta$ a $\theta$-derivation of $A$, we consider cyclic left module codes $\mathcal{C}=Rg/Rf\subset R/Rf$ where $g$ is a left and right divisor of $f$ in $R$. In this paper we derive a parity check matrix when $A$ is a finite commutative frobenius ring using only the framework of skew polynomial rings. We consider rings $A=B[a_1,\ldots,a_s]$ which are free $B$-algebras where the restriction of $\delta$ and $\theta$ to $B$ are polynomial maps. If a Gr\"obner basis can be computed over $B$, then we show that all Euclidean and Hermitian dual-containing codes $\mathcal{C}=Rg/Rf\subset R/Rf$ can be computed using a Gr\"obner basis. We also give an algorithm to test if the dual code is again a cyclic left module code. We illustrate our approach for rings of order $4$ with non-trivial endomorphism and the Galois ring of characteristic $4$.
Partite, $3$-uniform hypergraphs are $3$-uniform hypergraphs in which each hyperedge contains exactly one point from each of the $3$ disjoint vertex classes. We consider the degree sequence problem of partite, $3$-uniform hypergraphs, that is, to decide if such a hypergraph with prescribed degree sequences exists. We prove that this decision problem is NP-complete in general, and give a polynomial running time algorithm for third almost-regular degree sequences, that is, when each degree in one of the vertex classes is $k$ or $k-1$ for some fixed $k$, and there is no restriction for the other two vertex classes. We also consider the sampling problem, that is, to uniformly sample partite, $3$-uniform hypergraphs with prescribed degree sequences. We propose a Parallel Tempering method, where the hypothetical energy of the hypergraphs measures the deviation from the prescribed degree sequence. The method has been implemented and tested on synthetic and real data. It can also be applied for $\chi^2$ testing of contingency tables. We have shown that this hypergraph-based $\chi^2$ test is more sensitive than the standard $\chi^2$ test. The extra sensitivity is especially advantageous on small data sets, where the proposed Parallel Tempering method shows promising performance.
Preconditioning is essential in iterative methods for solving linear systems of equations. We study a nonclassic matrix condition number, the $\omega$-condition number, in the context of optimal conditioning for low rank updating of positive definite matrices. For a positive definite matrix, this condition measure is the ratio of the arithmetic and geometric means of the eigenvalues. In particular, we concentrate on linear systems with low rank updates of positive definite matrices which are close to singular. These systems arise in the contexts of nonsmooth Newton methods using generalized Jacobians. We derive an explicit formula for the optimal $\omega$-preconditioned update in this framework. Evaluating or estimating the classical condition number $\kappa$ can be expensive. We show that the $\omega$-condition number can be evaluated exactly following a Cholesky or LU factorization and it estimates the actual condition of a linear system significantly better. Moreover, our empirical results show a significant decrease in the number of iterations required for a requested accuracy in the residual during an iterative method, i.e., these results confirm the efficacy of using the $\omega$-condition number compared to the classical condition number.
Partial differential equations (PDEs) have become an essential tool for modeling complex physical systems. Such equations are typically solved numerically via mesh-based methods, such as finite element methods, the outputs of which consist of the solutions on a set of mesh nodes over the spatial domain. However, these simulations are often prohibitively costly to survey the input space. In this paper, we propose an efficient emulator that simultaneously predicts the outputs on a set of mesh nodes, with theoretical justification of its uncertainty quantification. The novelty of the proposed method lies in the incorporation of the mesh node coordinates into the statistical model. In particular, the proposed method segments the mesh nodes into multiple clusters via a Dirichlet process prior and fits a Gaussian process model in each. Most importantly, by revealing the underlying clustering structures, the proposed method can extract valuable flow physics present in the systems that can be used to guide further investigations. Real examples are demonstrated to show that our proposed method has smaller prediction errors than its main competitors, with competitive computation time, and identifies interesting clusters of mesh nodes that exhibit coherent input-output relationships and possess physical significance, such as satisfying boundary conditions. An R package for the proposed methodology is provided in an open repository.
In this article, we study the inconsistency of systems of $\min-\rightarrow$ fuzzy relational equations. We give analytical formulas for computing the Chebyshev distances $\nabla = \inf_{d \in \mathcal{D}} \Vert \beta - d \Vert$ associated to systems of $\min-\rightarrow$ fuzzy relational equations of the form $\Gamma \Box_{\rightarrow}^{\min} x = \beta$, where $\rightarrow$ is a residual implicator among the G\"odel implication $\rightarrow_G$, the Goguen implication $\rightarrow_{GG}$ or Lukasiewicz's implication $\rightarrow_L$ and $\mathcal{D}$ is the set of second members of consistent systems defined with the same matrix $\Gamma$. The main preliminary result that allows us to obtain these formulas is that the Chebyshev distance $\nabla$ is the lower bound of the solutions of a vector inequality, whatever the residual implicator used. Finally, we show that, in the case of the $\min-\rightarrow_{G}$ system, the Chebyshev distance $\nabla$ may be an infimum, while it is always a minimum for $\min-\rightarrow_{GG}$ and $\min-\rightarrow_{L}$ systems.