Covariance and Hessian matrices have been analyzed separately in the literature for classification problems. However, integrating these matrices has the potential to enhance their combined power in improving classification performance. We present a novel approach that combines the eigenanalysis of a covariance matrix evaluated on a training set with a Hessian matrix evaluated on a deep learning model to achieve optimal class separability in binary classification tasks. Our approach is substantiated by formal proofs that establish its capability to maximize between-class mean distance and minimize within-class variances. By projecting data into the combined space of the most relevant eigendirections from both matrices, we achieve optimal class separability as per the linear discriminant analysis (LDA) criteria. Empirical validation across neural and health datasets consistently supports our theoretical framework and demonstrates that our method outperforms established methods. Our method stands out by addressing both LDA criteria, unlike PCA and the Hessian method, which predominantly emphasize one criterion each. This comprehensive approach captures intricate patterns and relationships, enhancing classification performance. Furthermore, through the utilization of both LDA criteria, our method outperforms LDA itself by leveraging higher-dimensional feature spaces, in accordance with Cover's theorem, which favors linear separability in higher dimensions. Our method also surpasses kernel-based methods and manifold learning techniques in performance. Additionally, our approach sheds light on complex DNN decision-making, rendering them comprehensible within a 2D space.
Simulated events are key ingredients in almost all high-energy physics analyses. However, imperfections in the simulation can lead to sizeable differences between the observed data and simulated events. The effects of such mismodelling on relevant observables must be corrected either effectively via scale factors, with weights or by modifying the distributions of the observables and their correlations. We introduce a correction method that transforms one multidimensional distribution (simulation) into another one (data) using a simple architecture based on a single normalising flow with a boolean condition. We demonstrate the effectiveness of the method on a physics-inspired toy dataset with non-trivial mismodelling of several observables and their correlations.
Conditional copulas models allow the dependence structure between multiple response variables to be modelled as a function of covariates. LocalCop (Acar & Lysy, 2024) is an R/C++ package for computationally efficient semiparametric conditional copula modelling using a local likelihood inference framework developed in Acar, Craiu, & Yao (2011), Acar, Craiu, & Yao (2013) and Acar, Czado, & Lysy (2019).
Polytopic autoencoders provide low-dimensional parametrizations of states in a polytope. For nonlinear PDEs, this is readily applied to low-dimensional linear parameter-varying (LPV) approximations as they have been exploited for efficient nonlinear controller design via series expansions of the solution to the state-dependent Riccati equation. In this work, we develop a polytopic autoencoder for control applications and show how it outperforms standard linear approaches in view of LPV approximations of nonlinear systems and how the particular architecture enables higher order series expansions at little extra computational effort. We illustrate the properties and potentials of this approach to computational nonlinear controller design for large-scale systems with a thorough numerical study.
Unisolvence of unsymmetric Kansa collocation is still a substantially open problem. We prove that Kansa matrices with MultiQuadrics and Inverse MultiQuadrics for the Dirichlet problem of the Poisson equation are almost surely nonsingular, when the collocation points are chosen by any continuous random distribution in the domain interior and arbitrarily on its boundary.
Physics-compliant models of RIS-parametrized channels assign a load-terminated port to each RIS element. For conventional diagonal RIS (D-RIS), each auxiliary port is terminated by its own independent and individually tunable load (i.e., independent of the other auxiliary ports). For beyond-diagonal RIS (BD-RIS), the auxiliary ports are terminated by a tunable load circuit which couples the auxiliary ports to each other. Here, we point out that a physics-compliant model of the load circuit of a BD-RIS takes the same form as a physics-compliant model of a D-RIS-parametrized radio environment: a multi-port network with a subset of ports terminated by individually tunable loads (independent of each other). Consequently, we recognize that a BD-RIS-parametrized radio environment can be understood as a multi-port cascade network (i.e., the cascade of radio environment with load circuit) terminated by individually tunable loads (independent of each other). Hence, the BD-RIS problem can be mapped into the original D-RIS problem by replacing the radio environment with the cascade of radio environment and load circuit. The insight that BD-RIS can be physics-compliantly analyzed with the conventional D-RIS formalism implies that (i) the same optimization protocols as for D-RIS can be used for the BD-RIS case, and (ii) it is unclear if existing comparisons between BD-RIS and D-RIS are fair because for a fixed number of RIS elements, a BD-RIS has usually more tunable lumped elements.
We address the problem of the best uniform approximation of a continuous function on a convex domain. The approximation is by linear combinations of a finite system of functions (not necessarily Chebyshev) under arbitrary linear constraints. By modifying the concept of alternance and of the Remez iterative procedure we present a method, which demonstrates its efficiency in numerical problems. The linear rate of convergence is proved under some favourable assumptions. A special attention is paid to systems of complex exponents, Gaussian functions, lacunar algebraic and trigonometric polynomials. Applications to signal processing, linear ODE, switching dynamical systems, and to Markov-Bernstein type inequalities are considered.
We describe a family of iterative algorithms that involve the repeated execution of discrete and inverse discrete Fourier transforms. One interesting member of this family is motivated by the discrete Fourier transform uncertainty principle and involves the application of a sparsification operation to both the real domain and frequency domain data with convergence obtained when real domain sparsity hits a stable pattern. This sparsification variant has practical utility for signal denoising, in particular the recovery of a periodic spike signal in the presence of Gaussian noise. General convergence properties and denoising performance relative to existing methods are demonstrated using simulation studies. An R package implementing this technique and related resources can be found at //hrfrost.host.dartmouth.edu/IterativeFT.
Sparse joint shift (SJS) was recently proposed as a tractable model for general dataset shift which may cause changes to the marginal distributions of features and labels as well as the posterior probabilities and the class-conditional feature distributions. Fitting SJS for a target dataset without label observations may produce valid predictions of labels and estimates of class prior probabilities. We present new results on the transmission of SJS from sets of features to larger sets of features, a conditional correction formula for the class posterior probabilities under the target distribution, identifiability of SJS, and the relationship between SJS and covariate shift. In addition, we point out inconsistencies in the algorithms which were proposed for estimating the characteristics of SJS, as they could hamper the search for optimal solutions, and suggest potential improvements.
The univariate dimension reduction (UDR) method stands as a way to estimate the statistical moments of the output that is effective in a large class of uncertainty quantification (UQ) problems. UDR's fundamental strategy is to approximate the original function using univariate functions so that the UQ cost only scales linearly with the dimension of the problem. Nonetheless, UDR's effectiveness can diminish when uncertain inputs have high variance, particularly when assessing the output's second and higher-order statistical moments. This paper proposes a new method, gradient-enhanced univariate dimension reduction (GUDR), that enhances the accuracy of UDR by incorporating univariate gradient function terms into the UDR approximation function. Theoretical results indicate that the GUDR approximation is expected to be one order more accurate than UDR in approximating the original function, and it is expected to generate more accurate results in computing the output's second and higher-order statistical moments. Our proposed method uses a computational graph transformation strategy to efficiently evaluate the GUDR approximation function on tensor-grid quadrature inputs, and use the tensor-grid input-output data to compute the statistical moments of the output. With an efficient automatic differentiation method to compute the gradients, our method preserves UDR's linear scaling of computation time with problem dimension. Numerical results show that the GUDR is more accurate than UDR in estimating the standard deviation of the output and has a performance comparable to the method of moments using a third-order Taylor series expansion.
We introduce a 2-dimensional stochastic dominance (2DSD) index to characterize both strict and almost stochastic dominance. Based on this index, we derive an estimator for the minimum violation ratio (MVR), also known as the critical parameter, of the almost stochastic ordering condition between two variables. We determine the asymptotic properties of the empirical 2DSD index and MVR for the most frequently used stochastic orders. We also provide conditions under which the bootstrap estimators of these quantities are strongly consistent. As an application, we develop consistent bootstrap testing procedures for almost stochastic dominance. The performance of the tests is checked via simulations and the analysis of real data.