亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This Innovative Practice full paper describes a technical innovation for scalable teaching of cybersecurity hands-on classes using interactive learning environments. Hands-on experience significantly improves the practical skills of learners. However, the preparation and delivery of hands-on classes usually do not scale. Teaching even small groups of students requires a substantial effort to prepare the class environment and practical assignments. Further issues are associated with teaching large classes, providing feedback, and analyzing learning gains. We present our research effort and practical experience in designing and using learning environments that scale up hands-on cybersecurity classes. The environments support virtual networks with full-fledged operating systems and devices that emulate real-world systems. (...) Using the presented environments KYPO Cyber Range Platform and Cyber Sandbox Creator, we delivered the classes on-site or remotely for various target groups of learners (K-12, university students, and professional learners). The learners value the realistic nature of the environments that enable exercising theoretical concepts and tools. The instructors value time-efficiency when preparing and deploying the hands-on activities. Engineering and computing educators can freely use our software, which we have released under an open-source license. We also provide detailed documentation and exemplary hands-on training to help other educators adopt our teaching innovations and enable sharing of reusable components within the community.

相關內容

Current network control plane verification tools cannot scale to large networks, because of the complexity of jointly reasoning about the behaviors of all nodes in the network. In this paper we present a modular approach to control plane verification, whereby end-to-end network properties are verified via a set of purely local checks on individual nodes and edges. The approach targets the verification of safety properties for BGP configurations and provides guarantees in the face of both arbitrary external route announcements from neighbors and arbitrary node/link failures. We have proven the approach correct and also implemented it in a tool called Lightyear. Experimental results show that Lightyear scales dramatically better than prior control plane verifiers. Further, we have used Lightyear to verify three properties of the wide area network of a major cloud provider, containing hundreds of routers and tens of thousands of edges. To our knowledge no prior tool has been demonstrated to provide such guarantees at that scale. Finally, in addition to the scaling benefits, our modular approach to verification makes it easy to localize the causes of configuration errors and to support incremental re-verification as configurations are updated

The design of effective online caching policies is an increasingly important problem for content distribution networks, online social networks and edge computing services, among other areas. This paper proposes a new algorithmic toolbox for tackling this problem through the lens of optimistic online learning. We build upon the Follow-the-Regularized-Leader (FTRL) framework which is developed further here to include predictions for the file requests, and we design online caching algorithms for bipartite networks with fixed-size caches or elastic leased caches subject to time-average budget constraints. The predictions are provided by a content recommendation system that influences the users viewing activity, and hence can naturally reduce the caching network's uncertainty about future requests. We prove that the proposed optimistic learning caching policies can achieve sub-zero performance loss (regret) for perfect predictions, and maintain the best achievable regret bound $O(\sqrt T)$ even for arbitrary-bad predictions. The performance of the proposed algorithms is evaluated with detailed trace-driven numerical tests.

The design of effective online caching policies is an increasingly important problem for content distribution networks, online social networks and edge computing services, among other areas. This paper proposes a new algorithmic toolbox for tackling this problem through the lens of optimistic online learning. We build upon the Follow-the-Regularized-Leader (FTRL) framework, which is developed further here to include predictions for the file requests, and we design online caching algorithms for bipartite networks with fixed-size caches or elastic leased caches subject to time-average budget constraints. The predictions are provided by a content recommendation system that influences the users viewing activity and hence can naturally reduce the caching network's uncertainty about future requests. We also extend the framework to learn and utilize the best request predictor in cases where many are available. We prove that the proposed {optimistic} learning caching policies can achieve sub-zero performance loss (regret) for perfect predictions, and maintain the sub-linear regret bound $O(\sqrt T)$, which is the best achievable bound for policies that do not use predictions, even for arbitrary-bad predictions. The performance of the proposed algorithms is evaluated with detailed trace-driven numerical tests.

Specifications of complex, large scale, computer software and hardware systems can be radically simplified by using simple maps from input sequences to output values. These "state machine maps" provide an alternative representation of classical Moore type state machines. Composition of state machine maps corresponds to state machine products and can be used to specify essentially any type of interconnection as well as parallel and distributed computation. State machine maps can also specify abstract properties of systems and are significantly more concise and scalable than traditional representations of automata. Examples included here include specifications of producer/consumer software, network distributed consensus, real-time digital circuits, and operating system scheduling. The motivation for this work comes from experience designing and developing operating systems and real-time software where weak methods for understanding and exploring designs is a well known handicap. The methods introduced here are based on ordinary discrete mathematics, primitive recursive functions and deterministic state machines and are intended, initially, to aid the intuition and understanding of the system developers. Staying strictly within the boundaries of classical deterministic state machines anchors the methods to the algebraic structures of automata and semigroups, obviates any need for axiomatic deduction systems, "formal methods", or extensions to the model, and makes the specifications more faithful to engineering practice. While state machine maps are obvious representations of state machines, the techniques introduced here for defining and composing them are novel.

We study online convex optimization with switching costs, a practically important but also extremely challenging problem due to the lack of complete offline information. By tapping into the power of machine learning (ML) based optimizers, ML-augmented online algorithms (also referred to as expert calibration in this paper) have been emerging as state of the art, with provable worst-case performance guarantees. Nonetheless, by using the standard practice of training an ML model as a standalone optimizer and plugging it into an ML-augmented algorithm, the average cost performance can be even worse than purely using ML predictions. In order to address the "how to learn" challenge, we propose EC-L2O (expert-calibrated learning to optimize), which trains an ML-based optimizer by explicitly taking into account the downstream expert calibrator. To accomplish this, we propose a new differentiable expert calibrator that generalizes regularized online balanced descent and offers a provably better competitive ratio than pure ML predictions when the prediction error is large. For training, our loss function is a weighted sum of two different losses -- one minimizing the average ML prediction error for better robustness, and the other one minimizing the post-calibration average cost. We also provide theoretical analysis for EC-L2O, highlighting that expert calibration can be even beneficial for the average cost performance and that the high-percentile tail ratio of the cost achieved by EC-L2O to that of the offline optimal oracle (i.e., tail cost ratio) can be bounded. Finally, we test EC-L2O by running simulations for sustainable datacenter demand response. Our results demonstrate that EC-L2O can empirically achieve a lower average cost as well as a lower competitive ratio than the existing baseline algorithms.

In this paper, we propose a novel design, called MixNN, for protecting deep learning model structure and parameters. The layers in a deep learning model of MixNN are fully decentralized. It hides communication address, layer parameters and operations, and forward as well as backward message flows among non-adjacent layers using the ideas from mix networks. MixNN has following advantages: 1) an adversary cannot fully control all layers of a model including the structure and parameters, 2) even some layers may collude but they cannot tamper with other honest layers, 3) model privacy is preserved in the training phase. We provide detailed descriptions for deployment. In one classification experiment, we compared a neural network deployed in a virtual machine with the same one using the MixNN design on the AWS EC2. The result shows that our MixNN retains less than 0.001 difference in terms of classification accuracy, while the whole running time of MixNN is about 7.5 times slower than the one running on a single virtual machine.

The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.

Federated learning (FL) is an emerging, privacy-preserving machine learning paradigm, drawing tremendous attention in both academia and industry. A unique characteristic of FL is heterogeneity, which resides in the various hardware specifications and dynamic states across the participating devices. Theoretically, heterogeneity can exert a huge influence on the FL training process, e.g., causing a device unavailable for training or unable to upload its model updates. Unfortunately, these impacts have never been systematically studied and quantified in existing FL literature. In this paper, we carry out the first empirical study to characterize the impacts of heterogeneity in FL. We collect large-scale data from 136k smartphones that can faithfully reflect heterogeneity in real-world settings. We also build a heterogeneity-aware FL platform that complies with the standard FL protocol but with heterogeneity in consideration. Based on the data and the platform, we conduct extensive experiments to compare the performance of state-of-the-art FL algorithms under heterogeneity-aware and heterogeneity-unaware settings. Results show that heterogeneity causes non-trivial performance degradation in FL, including up to 9.2% accuracy drop, 2.32x lengthened training time, and undermined fairness. Furthermore, we analyze potential impact factors and find that device failure and participant bias are two potential factors for performance degradation. Our study provides insightful implications for FL practitioners. On the one hand, our findings suggest that FL algorithm designers consider necessary heterogeneity during the evaluation. On the other hand, our findings urge system providers to design specific mechanisms to mitigate the impacts of heterogeneity.

Behaviors of the synthetic characters in current military simulations are limited since they are generally generated by rule-based and reactive computational models with minimal intelligence. Such computational models cannot adapt to reflect the experience of the characters, resulting in brittle intelligence for even the most effective behavior models devised via costly and labor-intensive processes. Observation-based behavior model adaptation that leverages machine learning and the experience of synthetic entities in combination with appropriate prior knowledge can address the issues in the existing computational behavior models to create a better training experience in military training simulations. In this paper, we introduce a framework that aims to create autonomous synthetic characters that can perform coherent sequences of believable behavior while being aware of human trainees and their needs within a training simulation. This framework brings together three mutually complementary components. The first component is a Unity-based simulation environment - Rapid Integration and Development Environment (RIDE) - supporting One World Terrain (OWT) models and capable of running and supporting machine learning experiments. The second is Shiva, a novel multi-agent reinforcement and imitation learning framework that can interface with a variety of simulation environments, and that can additionally utilize a variety of learning algorithms. The final component is the Sigma Cognitive Architecture that will augment the behavior models with symbolic and probabilistic reasoning capabilities. We have successfully created proof-of-concept behavior models leveraging this framework on realistic terrain as an essential step towards bringing machine learning into military simulations.

In recent years, mobile devices have gained increasingly development with stronger computation capability and larger storage. Some of the computation-intensive machine learning and deep learning tasks can now be run on mobile devices. To take advantage of the resources available on mobile devices and preserve users' privacy, the idea of mobile distributed machine learning is proposed. It uses local hardware resources and local data to solve machine learning sub-problems on mobile devices, and only uploads computation results instead of original data to contribute to the optimization of the global model. This architecture can not only relieve computation and storage burden on servers, but also protect the users' sensitive information. Another benefit is the bandwidth reduction, as various kinds of local data can now participate in the training process without being uploaded to the server. In this paper, we provide a comprehensive survey on recent studies of mobile distributed machine learning. We survey a number of widely-used mobile distributed machine learning methods. We also present an in-depth discussion on the challenges and future directions in this area. We believe that this survey can demonstrate a clear overview of mobile distributed machine learning and provide guidelines on applying mobile distributed machine learning to real applications.

北京阿比特科技有限公司