{mayi_des}
We use a labelled deduction system ( LND$_{ED-}$TRS ) based on the concept of computational paths (sequences of rewrites) as equalities between two terms of the same type, which allowed us to carry out in homotopic theory an approach using the concept of computational paths. From this, we show that the computational paths can be used to perform the proofs of the $LND_{EQ}-TRS_{2}$ rewriting system.
One highly promising direction for enabling flexible real-time on-device image editing is utilizing data distillation by leveraging large-scale text-to-image diffusion models, such as Stable Diffusion, to generate paired datasets used for training generative adversarial networks (GANs). This approach notably alleviates the stringent requirements typically imposed by high-end commercial GPUs for performing image editing with diffusion models. However, unlike text-to-image diffusion models, each distilled GAN is specialized for a specific image editing task, necessitating costly training efforts to obtain models for various concepts. In this work, we introduce and address a novel research direction: can the process of distilling GANs from diffusion models be made significantly more efficient? To achieve this goal, we propose a series of innovative techniques. First, we construct a base GAN model with generalized features, adaptable to different concepts through fine-tuning, eliminating the need for training from scratch. Second, we identify crucial layers within the base GAN model and employ Low-Rank Adaptation (LoRA) with a simple yet effective rank search process, rather than fine-tuning the entire base model. Third, we investigate the minimal amount of data necessary for fine-tuning, further reducing the overall training time. Extensive experiments show that we can efficiently empower GANs with the ability to perform real-time high-quality image editing on mobile devices with remarkable reduced training cost and storage for each concept.
A binary word is called $q$-decreasing, for $q>0$, if every of its length maximal factors of the form $0^a1^b$, $a>0$, satisfies $q \cdot a > b$. We bijectively link $q$-decreasing words with certain prefixes of the cutting sequence of the line $y=qx$. We show that the number of $q$-decreasing words of length $n$ grows as $\Phi(q)^{n} C_q $ for some constant $C_q$ which depends on $q$ but not on $n$. We demonstrate that $\Phi(1)$ is the golden ratio, $\Phi(2)$ is equal to the tribonacci constant, $\Phi(k)$ is $(k+1)$-bonacci constant. Furthermore, we prove that the function $\Phi(q)$ is strictly increasing, discontinuous at every positive rational point, exhibits a fractal structure related to the Stern--Brocot tree and Minkowski's question mark function.
Gaussian processes (GPs) are widely-used tools in spatial statistics and machine learning and the formulae for the mean function and covariance kernel of a GP $T u$ that is the image of another GP $u$ under a linear transformation $T$ acting on the sample paths of $u$ are well known, almost to the point of being folklore. However, these formulae are often used without rigorous attention to technical details, particularly when $T$ is an unbounded operator such as a differential operator, which is common in many modern applications. This note provides a self-contained proof of the claimed formulae for the case of a closed, densely-defined operator $T$ acting on the sample paths of a square-integrable (not necessarily Gaussian) stochastic process. Our proof technique relies upon Hille's theorem for the Bochner integral of a Banach-valued random variable.
In this paper, for any fixed integer $q>2$, we construct $q$-ary codes correcting a burst of at most $t$ deletions with redundancy $\log n+8\log\log n+o(\log\log n)+\gamma_{q,t}$ bits and near-linear encoding/decoding complexity, where $n$ is the message length and $\gamma_{q,t}$ is a constant that only depends on $q$ and $t$. In previous works there are constructions of such codes with redundancy $\log n+O(\log q\log\log n)$ bits or $\log n+O(t^2\log\log n)+O(t\log q)$. The redundancy of our new construction is independent of $q$ and $t$ in the second term.
The $b$-symbol metric is a generalization of the Hamming metric. Linear codes, in the $b$-symbol metric, have been used in the read channel whose outputs consist of $b$ consecutive symbols. The Griesmer bound outperforms the Singleton bound for $\mathbb{F}_q$-linear codes in the Hamming metric, when $q$ is fixed and the length is large enough. This scenario is also applicable in the $b$-symbol metric. Shi, Zhu, and Helleseth recently made a conjecture on cyclic codes in the $b$-symbol metric. In this paper, we present the $b$-symbol Griesmer bound for linear codes by concatenating linear codes and simplex codes. Based on cyclic codes and extended cyclic codes, we propose two families of distance-optimal linear codes with respect to the $b$-symbol Griesmer bound.
Consider the problem of estimating a random variable $X$ from noisy observations $Y = X+ Z$, where $Z$ is standard normal, under the $L^1$ fidelity criterion. It is well known that the optimal Bayesian estimator in this setting is the conditional median. This work shows that the only prior distribution on $X$ that induces linearity in the conditional median is Gaussian. Along the way, several other results are presented. In particular, it is demonstrated that if the conditional distribution $P_{X|Y=y}$ is symmetric for all $y$, then $X$ must follow a Gaussian distribution. Additionally, we consider other $L^p$ losses and observe the following phenomenon: for $p \in [1,2]$, Gaussian is the only prior distribution that induces a linear optimal Bayesian estimator, and for $p \in (2,\infty)$, infinitely many prior distributions on $X$ can induce linearity. Finally, extensions are provided to encompass noise models leading to conditional distributions from certain exponential families.
We consider a logic with truth values in the unit interval and which uses aggregation functions instead of quantifiers, and we describe a general approach to asymptotic elimination of aggregation functions and, indirectly, of asymptotic elimination of Mostowski style generalized quantifiers, since such can be expressed by using aggregation functions. The notion of ``local continuity'' of an aggregation function, which we make precise in two (related) ways, plays a central role in this approach.
The notion of $\alpha$-equivalence between $\lambda$-terms is commonly used to identify terms that are considered equal. However, due to the primitive treatment of free variables, this notion falls short when comparing subterms occurring within a larger context. Depending on the usage of the Barendregt convention (choosing different variable names for all involved binders), it will equate either too few or too many subterms. We introduce a formal notion of context-sensitive $\alpha$-equivalence, where two open terms can be compared within a context that resolves their free variables. We show that this equivalence coincides exactly with the notion of bisimulation equivalence. Furthermore, we present an efficient $O(n\log n)$ runtime algorithm that identifies $\lambda$-terms modulo context-sensitive $\alpha$-equivalence, improving upon a previously established $O(n\log^2 n)$ bound for a hashing modulo ordinary $\alpha$-equivalence by Maziarz et al. Hashing $\lambda$-terms is useful in many applications that require common subterm elimination and structure sharing. We employ the algorithm to obtain a large-scale, densely packed, interconnected graph of mathematical knowledge from the Coq proof assistant for machine learning purposes.
Relational concept analysis (RCA) is an extension of formal concept analysis allowing to deal with several related contexts simultaneously. It has been designed for learning description logic theories from data and used within various applications. A puzzling observation about RCA is that it returns a single family of concept lattices although, when the data feature circular dependencies, other solutions may be considered acceptable. The semantics of RCA, provided in an operational way, does not shed light on this issue. In this report, we define these acceptable solutions as those families of concept lattices which belong to the space determined by the initial contexts (well-formed), cannot scale new attributes (saturated), and refer only to concepts of the family (self-supported). We adopt a functional view on the RCA process by defining the space of well-formed solutions and two functions on that space: one expansive and the other contractive. We show that the acceptable solutions are the common fixed points of both functions. This is achieved step-by-step by starting from a minimal version of RCA that considers only one single context defined on a space of contexts and a space of lattices. These spaces are then joined into a single space of context-lattice pairs, which is further extended to a space of indexed families of context-lattice pairs representing the objects manippulated by RCA. We show that RCA returns the least element of the set of acceptable solutions. In addition, it is possible to build dually an operation that generates its greatest element. The set of acceptable solutions is a complete sublattice of the interval between these two elements. Its structure and how the defined functions traverse it are studied in detail.
This paper investigates the rate-distortion function, under a squared error distortion $D$, for an $n$-dimensional random vector uniformly distributed on an $(n-1)$-sphere of radius $R$. First, an expression for the rate-distortion function is derived for any values of $n$, $D$, and $R$. Second, two types of asymptotics with respect to the rate-distortion function of a Gaussian source are characterized. More specifically, these asymptotics concern the low-distortion regime (that is, $D \to 0$) and the high-dimensional regime (that is, $n \to \infty$).