亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Intrusion detection has been a commonly adopted detective security measures to safeguard systems and networks from various threats. A robust intrusion detection system (IDS) can essentially mitigate threats by providing alerts. In networks based IDS, typically we deal with cyber threats like distributed denial of service (DDoS), spoofing, reconnaissance, brute-force, botnets, and so on. In order to detect these threats various machine learning (ML) and deep learning (DL) models have been proposed. However, one of the key challenges with these predictive approaches is the presence of false positive (FP) and false negative (FN) instances. This FPs and FNs within any black-box intrusion detection system (IDS) make the decision-making task of an analyst further complicated. In this paper, we propose an explainable artificial intelligence (XAI) based visual analysis approach using overlapping SHAP plots that presents the feature explanation to identify potential false positive and false negatives in IDS. Our approach can further provide guidance to security analysts for effective decision-making. We present case study with multiple publicly available network traffic datasets to showcase the efficacy of our approach for identifying false positive and false negative instances. Our use-case scenarios provide clear guidance for analysts on how to use the visual analysis approach for reliable course-of-actions against such threats.

相關內容

Quantitative requirements play an important role in the context of multi-agent systems, where there is often a trade-off between the tasks of individual agents and the constraints that the agents must jointly adhere to. We study multi-agent systems whose requirements are formally specified in the quantitative temporal logic LTL[$\mathcal{F}$] as a combination of local task specifications for the individual agents and a shared safety constraint, The intricate dependencies between the individual agents entailed by their local and shared objectives make the design of multi-agent systems error-prone, and their verification time-consuming. In this paper we address this problem by proposing a novel notion of quantitative assume-guarantee contracts, that enables the compositional design and verification of multi-agent systems with quantitative temporal specifications. The crux of these contracts lies in their ability to capture the coordination between the individual agents to achieve an optimal value of the overall specification under any possible behavior of the external environment. We show that the proposed framework improves the scalability and modularity of formal verification of multi-agent systems against quantitative temporal specifications.

Many computer systems are now being redesigned to incorporate LLM-powered agents, enabling natural language input and more flexible operations. This paper focuses on handling database transactions created by large language models (LLMs). Transactions generated by LLMs may include semantic errors, requiring systems to treat them as long-lived. This allows for human review and, if the transaction is incorrect, removal from the database history. Any removal action must ensure the database's consistency (the "C" in ACID principles) is maintained throughout the process. We propose a novel middleware framework based on Invariant Satisfaction (I-Confluence), which ensures consistency by identifying and coordinating dependencies between long-lived transactions and new transactions. This middleware buffers suspicious or compensating transactions to manage coordination states. Using the TPC-C benchmark, we evaluate how transaction generation frequency, user reviews, and invariant completeness impact system performance. For system researchers, this study establishes an interactive paradigm between LLMs and database systems, providing an "undoing" mechanism for handling incorrect operations while guaranteeing database consistency. For system engineers, this paper offers a middleware design that integrates removable LLM-generated transactions into existing systems with minimal modifications.

Data rebalancing techniques, including oversampling and undersampling, are a common approach to addressing the challenges of imbalanced data. To tackle unresolved problems related to both oversampling and undersampling, we propose a new undersampling approach that: (i) avoids the pitfalls of noise and overlap caused by synthetic data and (ii) avoids the pitfall of under-fitting caused by random undersampling. Instead of undersampling majority data randomly, our method undersamples datapoints based on their ability to improve model loss. Using improved model loss as a proxy measurement for classification performance, our technique assesses a datapoint's impact on loss and rejects those unable to improve it. In so doing, our approach rejects majority datapoints redundant to datapoints already accepted and, thereby, finds an optimal subset of majority training data for classification. The accept/reject component of our algorithm is motivated by a bilevel optimization problem uniquely formulated to identify the optimal training set we seek. Experimental results show our proposed technique with F1 scores up to 10% higher than state-of-the-art methods.

Rapid advancements in speech synthesis and voice conversion bring convenience but also new security risks, creating an urgent need for effective audio deepfake detection. Although current models perform well, their effectiveness diminishes when confronted with the diverse and evolving nature of real-world deepfakes. To address this issue, we propose a continual learning method named Region-Based Optimization (RegO) for audio deepfake detection. Specifically, we use the Fisher information matrix to measure important neuron regions for real and fake audio detection, dividing them into four regions. First, we directly fine-tune the less important regions to quickly adapt to new tasks. Next, we apply gradient optimization in parallel for regions important only to real audio detection, and in orthogonal directions for regions important only to fake audio detection. For regions that are important to both, we use sample proportion-based adaptive gradient optimization. This region-adaptive optimization ensures an appropriate trade-off between memory stability and learning plasticity. Additionally, to address the increase of redundant neurons from old tasks, we further introduce the Ebbinghaus forgetting mechanism to release them, thereby promoting the capability of the model to learn more generalized discriminative features. Experimental results show our method achieves a 21.3% improvement in EER over the state-of-the-art continual learning approach RWM for audio deepfake detection. Moreover, the effectiveness of RegO extends beyond the audio deepfake detection domain, showing potential significance in other tasks, such as image recognition. The code is available at //github.com/cyjie429/RegO

Despite the crucial need for formal safety and security verification of programs, discovering loop invariants remains a significant challenge. Static analysis is a primary technique for inferring loop invariants but often relies on substantial assumptions about underlying theories. Data-driven methods supported by dynamic analysis and machine learning algorithms have shown impressive performance in inferring loop invariants for some challenging programs. However, state-of-the-art data-driven techniques do not offer theoretical guarantees for finding loop invariants. We present a novel technique that leverages the simulated annealing (SA) search algorithm combined with SMT solvers and computational geometry to provide probabilistic guarantees for inferring loop invariants using data-driven methods. Our approach enhances the SA search with real analysis to define the search space and employs parallelism to increase the probability of success. To ensure the convergence of our algorithm, we adapt e-nets, a key concept from computational geometry. Our tool, DLIA2, implements these algorithms and demonstrates competitive performance against state-of-the-art techniques. We also identify a subclass of programs, on which we outperform the current state-of-the-art tool GSpacer.

Semantic segmentation often suffers from significant performance degradation when the trained network is applied to a different domain. To address this issue, unsupervised domain adaptation (UDA) has been extensively studied. Existing methods introduce the domain bridging techniques to mitigate substantial domain gap, which construct intermediate domains to facilitate the gradual transfer of knowledge across different domains. However, these strategies often require dataset-specific designs and may generate unnatural intermediate distributions that lead to semantic shift. In this paper, we propose DiDA, a universal degradation-based bridging technique formalized as a diffusion forward process. DiDA consists of two key modules: (1) Degradation-based Intermediate Domain Construction, which creates continuous intermediate domains through simple image degradation operations to encourage learning domain-invariant features as domain differences gradually diminish; (2) Semantic Shift Compensation, which leverages a diffusion encoder to encode and compensate for semantic shift information with degraded time-steps, preserving discriminative representations in the intermediate domains. As a plug-and-play solution, DiDA supports various degradation operations and seamlessly integrates with existing UDA methods. Extensive experiments on prevalent synthetic-to-real semantic segmentation benchmarks demonstrate that DiDA consistently improves performance across different settings and achieves new state-of-the-art results when combined with existing methods.

Blockchain enables novel, trustworthy Process-Aware Information Systems (PAISs) by enforcing the security, robustness, and traceability of operations. In particular, transparency ensures that all information exchanges are openly accessible, fostering trust within the system. Although this is a desirable property to enable notarization and auditing activities, it also represents a limitation for such cases where confidentiality is a requirement since interactions involve sensible data. Current solutions rely on obfuscation techniques or private infrastructures, hindering the enforcing capabilities of smart contracts and the public verifiability of transactions. Against this background, we propose CONFETTY, an architecture for blockchain-based PAISs aimed at preserving both confidentiality and transparency. Smart contracts enact, enforce and store public interactions, while attribute-based encryption techniques are adopted to specify access grants to confidential information. We assess the security of our solution through a systematic threat model analysis and assess its practical feasibility by gauging the performance of our implemented prototype in different scenarios from the literature.

Hyperproperties are commonly used in computer security to define information-flow policies and other requirements that reason about the relationship between multiple computations. In this paper, we study a novel class of hyperproperties where the individual computation paths are chosen by the strategic choices of a coalition of agents in a multi-agent system. We introduce HyperATL*, an extension of computation tree logic with path variables and strategy quantifiers. Our logic can express strategic hyperproperties, such as that the scheduler in a concurrent system has a strategy to avoid information leakage. HyperATL* is particularly useful to specify asynchronous hyperproperties, i.e., hyperproperties where the speed of the execution on the different computation paths depends on the choices of the scheduler. Unlike other recent logics for the specification of asynchronous hyperproperties, our logic is the first to admit decidable model checking for the full logic. We present a model checking algorithm for HyperATL* based on alternating automata, and show that our algorithm is asymptotically optimal by providing a matching lower bound. We have implemented a prototype model checker for a fragment of HyperATL*, able to check various security properties on small programs.

Spatio-temporal forecasting is challenging attributing to the high nonlinearity in temporal dynamics as well as complex location-characterized patterns in spatial domains, especially in fields like weather forecasting. Graph convolutions are usually used for modeling the spatial dependency in meteorology to handle the irregular distribution of sensors' spatial location. In this work, a novel graph-based convolution for imitating the meteorological flows is proposed to capture the local spatial patterns. Based on the assumption of smoothness of location-characterized patterns, we propose conditional local convolution whose shared kernel on nodes' local space is approximated by feedforward networks, with local representations of coordinate obtained by horizon maps into cylindrical-tangent space as its input. The established united standard of local coordinate system preserves the orientation on geography. We further propose the distance and orientation scaling terms to reduce the impacts of irregular spatial distribution. The convolution is embedded in a Recurrent Neural Network architecture to model the temporal dynamics, leading to the Conditional Local Convolution Recurrent Network (CLCRN). Our model is evaluated on real-world weather benchmark datasets, achieving state-of-the-art performance with obvious improvements. We conduct further analysis on local pattern visualization, model's framework choice, advantages of horizon maps and etc.

Seamlessly interacting with humans or robots is hard because these agents are non-stationary. They update their policy in response to the ego agent's behavior, and the ego agent must anticipate these changes to co-adapt. Inspired by humans, we recognize that robots do not need to explicitly model every low-level action another agent will make; instead, we can capture the latent strategy of other agents through high-level representations. We propose a reinforcement learning-based framework for learning latent representations of an agent's policy, where the ego agent identifies the relationship between its behavior and the other agent's future strategy. The ego agent then leverages these latent dynamics to influence the other agent, purposely guiding them towards policies suitable for co-adaptation. Across several simulated domains and a real-world air hockey game, our approach outperforms the alternatives and learns to influence the other agent.

北京阿比特科技有限公司