亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

While visual search for targets within a complex scene might benefit from using augmented-reality (AR) head-mounted display (HMD) technologies helping to efficiently direct human attention, imperfectly reliable automation support could manifest in occasional errors. The current study examined the effectiveness of different HMD cues that might support visual search performance and their respective consequences following automation errors. Fifty-six participants searched a 3D environment containing 48 objects in a room, in order to locate a target object that was viewed prior to each trial. They searched either unaided or assisted by one of three HMD types of cues: an arrow pointing to the target, a plan-view minimap highlighting the target, and a constantly visible icon depicting the appearance of the target object. The cue was incorrect on 17% of the trials for one group of participants and 100% correct for the second group. Through both analysis and modeling of both search speed and accuracy, the results indicated that the arrow and minimap cues depicting location information were more effective than the icon cue depicting visual appearance, both overall, and when the cue was correct. However, there was a tradeoff on the infrequent occasions when the cue erred. The most effective AR-based cue led to a greater automation bias, in which the cue was more often blindly followed without careful examination of the raw images. The results speak to the benefits of augmented reality and the need to examine potential costs when AR-conveyed information may be incorrect because of imperfectly reliable systems.

相關內容

This study proposes a hybrid deep-learning-metaheuristic framework with a bi-level architecture for road network design problems (NDPs). We train a graph neural network (GNN) to approximate the solution of the user equilibrium (UE) traffic assignment problem, and use inferences made by the trained model to calculate fitness function evaluations of a genetic algorithm (GA) to approximate solutions for NDPs. Using two NDP variants and an exact solver as benchmark, we show that our proposed framework can provide solutions within 5% gap of the global optimum results given less than 1% of the time required for finding the optimal results. Our framework can be utilized within an expert system for infrastructure planning to intelligently determine the best infrastructure management decisions. Given the flexibility of the framework, it can easily be adapted to many other decision problems that can be modeled as bi-level problems on graphs. Moreover, we observe many interesting future directions, thus we propose a brief research agenda for this topic. The key observation inspiring influential future research was that fitness function evaluation time using the inferences made by the GNN model for the genetic algorithm was in the order of milliseconds, which points to an opportunity and a need for novel heuristics that 1) can cope well with noisy fitness function values provided by neural networks, and 2) can use the significantly higher computation time provided to them to explore the search space effectively (rather than efficiently). This opens a new avenue for a modern class of metaheuristics that are crafted for use with AI-powered predictors.

The recently-developed infant wearable MAIJU provides a means to automatically evaluate infants' motor performance in an objective and scalable manner in out-of-hospital settings. This information could be used for developmental research and to support clinical decision-making, such as detection of developmental problems and guiding of their therapeutic interventions. MAIJU-based analyses rely fully on the classification of infant's posture and movement; it is hence essential to study ways to increase the accuracy of such classifications, aiming to increase the reliability and robustness of the automated analysis. Here, we investigated how self-supervised pre-training improves performance of the classifiers used for analyzing MAIJU recordings, and we studied whether performance of the classifier models is affected by context-selective quality-screening of pre-training data to exclude periods of little infant movement or with missing sensors. Our experiments show that i) pre-training the classifier with unlabeled data leads to a robust accuracy increase of subsequent classification models, and ii) selecting context-relevant pre-training data leads to substantial further improvements in the classifier performance.

Modern software systems heavily rely on external libraries developed by third-parties to ensure efficient development. However, frequent library upgrades can lead to compatibility issues between the libraries and their client systems. In this paper, we introduce CompSuite, a dataset that includes 123 real-world Java client-library pairs where upgrading the library causes an incompatibility issue in the corresponding client. Each incompatibility issue in CompSuite is associated with a test case authored by the developers, which can be used to reproduce the issue. The dataset also provides a command-line interface that simplifies the execution and validation of each issue. With this infrastructure, users can perform an inspection of any incompatibility issue with the push of a button, or reproduce an issue step-by-step for a more detailed investigation. We make CompSuite publicly available to promote open science. We believe that various software analysis techniques, such as compatibility checking, debugging, and regression test selection, can benefit from CompSuite.

The Byzantine consensus problem involves $n$ processes, out of which t < n could be faulty and behave arbitrarily. Three properties characterize consensus: (1) termination, requiring correct (non-faulty) processes to eventually reach a decision, (2) agreement, preventing them from deciding different values, and (3) validity, precluding ``unreasonable'' decisions. But, what is a reasonable decision? Strong validity, a classical property, stipulates that, if all correct processes propose the same value, only that value can be decided. Weak validity, another established property, stipulates that, if all processes are correct and they propose the same value, that value must be decided. The space of possible validity properties is vast. However, their impact on consensus remains unclear. This paper addresses the question of which validity properties allow Byzantine consensus to be solvable with partial synchrony, and at what cost. First, we determine necessary and sufficient conditions for a validity property to make the consensus problem solvable; we say that such validity properties are solvable. Notably, we prove that, if n <= 3t, all solvable validity properties are trivial (there exists an always-admissible decision). Furthermore, we show that, with any non-trivial (and solvable) validity property, consensus requires Omega(t^2) messages. This extends the seminal Dolev-Reischuk bound, originally proven for strong validity, to all non-trivial validity properties. Lastly, we give a general Byzantine consensus algorithm, we call Universal, for any solvable (and non-trivial) validity property. Importantly, Universal incurs O(n^2) message complexity. Thus, together with our lower bound, Universal implies a fundamental result in partial synchrony: with t \in Omega(n), the message complexity of all (non-trivial) consensus variants is Theta(n^2).

The rationale of this work is based on the current user trust discourse of Artificial Intelligence (AI). We aim to produce novel HCI approaches that use trust as a facilitator for the uptake (or appropriation) of current technologies. We propose a framework (HCTFrame) to guide non-experts to unlock the full potential of user trust in AI design. Results derived from a data triangulation of findings from three literature reviews demystify some misconceptions of user trust in computer science and AI discourse, and three case studies are conducted to assess the effectiveness of a psychometric scale in mapping potential users' trust breakdowns and concerns. This work primarily contributes to the fight against the tendency to design technical-centered vulnerable interactions, which can eventually lead to additional real and perceived breaches of trust. The proposed framework can be used to guide system designers on how to map and define user trust and the socioethical and organisational needs and characteristics of AI system design. It can also guide AI system designers on how to develop a prototype and operationalise a solution that meets user trust requirements. The article ends by providing some user research tools that can be employed to measure users' trust intentions and behaviours towards a proposed solution.

The increasing popularity of large language models (LLMs) such as ChatGPT has led to growing concerns about their safety, security risks, and ethical implications. This paper aims to provide an overview of the different types of security risks associated with ChatGPT, including malicious text and code generation, private data disclosure, fraudulent services, information gathering, and producing unethical content. We present an empirical study examining the effectiveness of ChatGPT's content filters and explore potential ways to bypass these safeguards, demonstrating the ethical implications and security risks that persist in LLMs even when protections are in place. Based on a qualitative analysis of the security implications, we discuss potential strategies to mitigate these risks and inform researchers, policymakers, and industry professionals about the complex security challenges posed by LLMs like ChatGPT. This study contributes to the ongoing discussion on the ethical and security implications of LLMs, underscoring the need for continued research in this area.

With the rapid development and large-scale popularity of program software, modern society increasingly relies on software systems. However, the problems exposed by software have also come to the fore. Software defect has become an important factor troubling developers. In this context, Automated Program Repair (APR) techniques have emerged, aiming to automatically fix software defect problems and reduce manual debugging work. In particular, benefiting from the advances in deep learning, numerous learning-based APR techniques have emerged in recent years, which also bring new opportunities for APR research. To give researchers a quick overview of APR techniques' complete development and future opportunities, we revisit the evolution of APR techniques and discuss in depth the latest advances in APR research. In this paper, the development of APR techniques is introduced in terms of four different patch generation schemes: search-based, constraint-based, template-based, and learning-based. Moreover, we propose a uniform set of criteria to review and compare each APR tool, summarize the advantages and disadvantages of APR techniques, and discuss the current state of APR development. Furthermore, we introduce the research on the related technical areas of APR that have also provided a strong motivation to advance APR development. Finally, we analyze current challenges and future directions, especially highlighting the critical opportunities that large language models bring to APR research.

We study polynomial systems with prescribed monomial supports in the Cox rings of toric varieties built from complete polyhedral fans. We present combinatorial formulas for the dimensions of their associated subvarieties under genericity assumptions on the coefficients of the polynomials. Using these formulas, we identify at which degrees generic systems in polytopal algebras form regular sequences. Our motivation comes from sparse elimination theory, where knowing the expected dimension of these subvarieties leads to specialized algorithms and to large speed-ups for solving sparse polynomial systems. As a special case, we classify the degrees at which regular sequences defined by weighted homogeneous polynomials can be found, answering an open question in the Gr\"obner bases literature. We also show that deciding whether a sparse system is generically a regular sequence in a polytopal algebra is hard from the point of view of theoretical computational complexity.

Most current audio-visual emotion recognition models lack the flexibility needed for deployment in practical applications. We envision a multimodal system that works even when only one modality is available and can be implemented interchangeably for either predicting emotional attributes or recognizing categorical emotions. Achieving such flexibility in a multimodal emotion recognition system is difficult due to the inherent challenges in accurately interpreting and integrating varied data sources. It is also a challenge to robustly handle missing or partial information while allowing direct switch between regression and classification tasks. This study proposes a \emph{versatile audio-visual learning} (VAVL) framework for handling unimodal and multimodal systems for emotion regression and emotion classification tasks. We implement an audio-visual framework that can be trained even when audio and visual paired data is not available for part of the training set (i.e., audio only or only video is present). We achieve this effective representation learning with audio-visual shared layers, residual connections over shared layers, and a unimodal reconstruction task. Our experimental results reveal that our architecture significantly outperforms strong baselines on both the CREMA-D and MSP-IMPROV corpora. Notably, VAVL attains a new state-of-the-art performance in the emotional attribute prediction task on the MSP-IMPROV corpus. Code available at: //github.com/ilucasgoncalves/VAVL

Artificial Intelligence (AI) and its applications have sparked extraordinary interest in recent years. This achievement can be ascribed in part to advances in AI subfields including Machine Learning (ML), Computer Vision (CV), and Natural Language Processing (NLP). Deep learning, a sub-field of machine learning that employs artificial neural network concepts, has enabled the most rapid growth in these domains. The integration of vision and language has sparked a lot of attention as a result of this. The tasks have been created in such a way that they properly exemplify the concepts of deep learning. In this review paper, we provide a thorough and an extensive review of the state of the arts approaches, key models design principles and discuss existing datasets, methods, their problem formulation and evaluation measures for VQA and Visual reasoning tasks to understand vision and language representation learning. We also present some potential future paths in this field of research, with the hope that our study may generate new ideas and novel approaches to handle existing difficulties and develop new applications.

北京阿比特科技有限公司