Consider a population of heterogenous agents whose choice behaviors are partially comparable according to given primitive orderings. The set of choice functions admissible in the population specifies a choice model. A choice model is self-progressive if each aggregate choice behavior consistent with the model is uniquely representable as a probability distribution over admissible choice functions that are comparable. We establish an equivalence between self-progressive choice models and well-known algebraic structures called lattices. This equivalence provides for a precise recipe to restrict or extend any choice model for unique orderly representation. To prove out, we characterize the minimal self-progressive extension of rational choice functions, explaining why agents might exhibit choice overload. We provide necessary and sufficient conditions for the identification of a (unique) primitive ordering that renders our choice overload representation to a choice model.
Quantum computing has recently emerged as a transformative technology. Yet, its promised advantages rely on efficiently translating quantum operations into viable physical realizations. In this work, we use generative machine learning models, specifically denoising diffusion models (DMs), to facilitate this transformation. Leveraging text-conditioning, we steer the model to produce desired quantum operations within gate-based quantum circuits. Notably, DMs allow to sidestep during training the exponential overhead inherent in the classical simulation of quantum dynamics -- a consistent bottleneck in preceding ML techniques. We demonstrate the model's capabilities across two tasks: entanglement generation and unitary compilation. The model excels at generating new circuits and supports typical DM extensions such as masking and editing to, for instance, align the circuit generation to the constraints of the targeted quantum device. Given their flexibility and generalization abilities, we envision DMs as pivotal in quantum circuit synthesis, enhancing both practical applications but also insights into theoretical quantum computation.
Crocodiles, known as one of the oldest and most resilient species on Earth, have demonstrated remarkable locomotor abilities both on land and in water, evolving over millennia to adapt to diverse environments. In this paper, we draw inspiration from crocodiles and introduce a highly biomimetic crocodile robot equipped with multiple degrees of freedom and articulated trunk joints. This design is based on a comprehensive analysis of the structural and motion characteristics observed in real crocodiles. The bionic crocodile robot has the problem of limb-torso incoordination during movement, in order to solve this problem, we apply the D-H method for both forward and inverse kinematics analysis of the robot's legs and spine. Through a series of simulation experiments, we investigate the robot's stability of motion, fault tolerance, and adaptability to the environment in two motor pattern: with and without the involvement of the spine and tail in its movements. Experiment results demonstrate that the bionic crocodile robot exhibits superior motion performance when the spine and tail cooperate with the extremities. This research not only showcases the potential of biomimicry in robotics but also underscores the significance of understanding how nature's designs can inform and enhance our technological innovations.
We establish conditions under which latent causal graphs are nonparametrically identifiable and can be reconstructed from unknown interventions in the latent space. Our primary focus is the identification of the latent structure in measurement models without parametric assumptions such as linearity or Gaussianity. Moreover, we do not assume the number of hidden variables is known, and we show that at most one unknown intervention per hidden variable is needed. This extends a recent line of work on learning causal representations from observations and interventions. The proofs are constructive and introduce two new graphical concepts -- imaginary subsets and isolated edges -- that may be useful in their own right. As a matter of independent interest, the proofs also involve a novel characterization of the limits of edge orientations within the equivalence class of DAGs induced by unknown interventions. These are the first results to characterize the conditions under which causal representations are identifiable without making any parametric assumptions in a general setting with unknown interventions and without faithfulness.
To improve the predictability of complex computational models in the experimentally-unknown domains, we propose a Bayesian statistical machine learning framework utilizing the Dirichlet distribution that combines results of several imperfect models. This framework can be viewed as an extension of Bayesian stacking. To illustrate the method, we study the ability of Bayesian model averaging and mixing techniques to mine nuclear masses. We show that the global and local mixtures of models reach excellent performance on both prediction accuracy and uncertainty quantification and are preferable to classical Bayesian model averaging. Additionally, our statistical analysis indicates that improving model predictions through mixing rather than mixing of corrected models leads to more robust extrapolations.
Empirical studies have widely demonstrated that neural networks are highly sensitive to small, adversarial perturbations of the input. The worst-case robustness against these so-called adversarial examples can be quantified by the Lipschitz constant of the neural network. However, only few theoretical results regarding this quantity exist in the literature. In this paper, we initiate the study of the Lipschitz constant of random ReLU neural networks, i.e., neural networks whose weights are chosen at random and which employ the ReLU activation function. For shallow neural networks, we characterize the Lipschitz constant up to an absolute numerical constant. Moreover, we extend our analysis to deep neural networks of sufficiently large width where we prove upper and lower bounds for the Lipschitz constant. These bounds match up to a logarithmic factor that depends on the depth.
If part of a population is hidden but two or more sources are available that each cover parts of this population, dual- or multiple-system(s) estimation can be applied to estimate this population. For this it is common to use the log-linear model, estimated with maximum likelihood. These maximum likelihood estimates are based on a non-linear model and therefore suffer from finite-sample bias, which can be substantial in case of small samples or a small population size. This problem was recognised by Chapman, who derived an estimator with good small sample properties in case of two available sources. However, he did not derive an estimator for more than two sources. We propose an estimator that is an extension of Chapman's estimator to three or more sources and compare this estimator with other bias-reduced estimators in a simulation study. The proposed estimator performs well, and much better than the other estimators. A real data example on homelessness in the Netherlands shows that our proposed model can make a substantial difference.
Markov chain Monte Carlo (MCMC) provides asymptotically consistent estimates of intractable posterior expectations as the number of iterations tends to infinity. However, in large data applications, MCMC can be computationally expensive per iteration. This has catalyzed interest in approximating MCMC in a manner that improves computational speed per iteration but does not produce asymptotically consistent estimates. In this article, we propose estimators based on couplings of Markov chains to assess the quality of such asymptotically biased sampling methods. The estimators give empirical upper bounds of the Wasserstein distance between the limiting distribution of the asymptotically biased sampling method and the original target distribution of interest. We establish theoretical guarantees for our upper bounds and show that our estimators can remain effective in high dimensions. We apply our quality measures to stochastic gradient MCMC, variational Bayes, and Laplace approximations for tall data and to approximate MCMC for Bayesian logistic regression in 4500 dimensions and Bayesian linear regression in 50000 dimensions.
Heterogeneous graph neural networks (HGNNs) as an emerging technique have shown superior capacity of dealing with heterogeneous information network (HIN). However, most HGNNs follow a semi-supervised learning manner, which notably limits their wide use in reality since labels are usually scarce in real applications. Recently, contrastive learning, a self-supervised method, becomes one of the most exciting learning paradigms and shows great potential when there are no labels. In this paper, we study the problem of self-supervised HGNNs and propose a novel co-contrastive learning mechanism for HGNNs, named HeCo. Different from traditional contrastive learning which only focuses on contrasting positive and negative samples, HeCo employs cross-viewcontrastive mechanism. Specifically, two views of a HIN (network schema and meta-path views) are proposed to learn node embeddings, so as to capture both of local and high-order structures simultaneously. Then the cross-view contrastive learning, as well as a view mask mechanism, is proposed, which is able to extract the positive and negative embeddings from two views. This enables the two views to collaboratively supervise each other and finally learn high-level node embeddings. Moreover, two extensions of HeCo are designed to generate harder negative samples with high quality, which further boosts the performance of HeCo. Extensive experiments conducted on a variety of real-world networks show the superior performance of the proposed methods over the state-of-the-arts.
Although measuring held-out accuracy has been the primary approach to evaluate generalization, it often overestimates the performance of NLP models, while alternative approaches for evaluating models either focus on individual tasks or on specific behaviors. Inspired by principles of behavioral testing in software engineering, we introduce CheckList, a task-agnostic methodology for testing NLP models. CheckList includes a matrix of general linguistic capabilities and test types that facilitate comprehensive test ideation, as well as a software tool to generate a large and diverse number of test cases quickly. We illustrate the utility of CheckList with tests for three tasks, identifying critical failures in both commercial and state-of-art models. In a user study, a team responsible for a commercial sentiment analysis model found new and actionable bugs in an extensively tested model. In another user study, NLP practitioners with CheckList created twice as many tests, and found almost three times as many bugs as users without it.
Events are happening in real-world and real-time, which can be planned and organized occasions involving multiple people and objects. Social media platforms publish a lot of text messages containing public events with comprehensive topics. However, mining social events is challenging due to the heterogeneous event elements in texts and explicit and implicit social network structures. In this paper, we design an event meta-schema to characterize the semantic relatedness of social events and build an event-based heterogeneous information network (HIN) integrating information from external knowledge base, and propose a novel Pair-wise Popularity Graph Convolutional Network (PP-GCN) based fine-grained social event categorization model. We propose a Knowledgeable meta-paths Instances based social Event Similarity (KIES) between events and build a weighted adjacent matrix as input to the PP-GCN model. Comprehensive experiments on real data collections are conducted to compare various social event detection and clustering tasks. Experimental results demonstrate that our proposed framework outperforms other alternative social event categorization techniques.