We introduce the text-to-instrument task, which aims at generating sample-based musical instruments based on textual prompts. Accordingly, we propose InstrumentGen, a model that extends a text-prompted generative audio framework to condition on instrument family, source type, pitch (across an 88-key spectrum), velocity, and a joint text/audio embedding. Furthermore, we present a differentiable loss function to evaluate the intra-instrument timbral consistency of sample-based instruments. Our results establish a foundational text-to-instrument baseline, extending research in the domain of automatic sample-based instrument generation.
Knowledge graph construction (KGC) is a multifaceted undertaking involving the extraction of entities, relations, and events. Traditionally, large language models (LLMs) have been viewed as solitary task-solving agents in this complex landscape. However, this paper challenges this paradigm by introducing a novel framework, CooperKGC. Departing from the conventional approach, CooperKGC establishes a collaborative processing network, assembling a KGC collaboration team capable of concurrently addressing entity, relation, and event extraction tasks. Our experiments unequivocally demonstrate that fostering collaboration and information interaction among diverse agents within CooperKGC yields superior results compared to individual cognitive processes operating in isolation. Importantly, our findings reveal that the collaboration facilitated by CooperKGC enhances knowledge selection, correction, and aggregation capabilities across multiple rounds of interactions.
Change Detection (CD) has been attracting extensive interests with the availability of bi-temporal datasets. However, due to the huge cost of multi-temporal images acquisition and labeling, existing change detection datasets are small in quantity, short in temporal, and low in practicability. Therefore, a large-scale practical-oriented dataset covering wide temporal phases is urgently needed to facilitate the community. To this end, the ChangeNet dataset is presented especially for multi-temporal change detection, along with the new task of ``Asymmetric Change Detection". Specifically, ChangeNet consists of 31,000 multi-temporal images pairs, a wide range of complex scenes from 100 cities, and 6 pixel-level annotated categories, which is far superior to all the existing change detection datasets including LEVIR-CD, WHU Building CD, etc.. In addition, ChangeNet contains amounts of real-world perspective distortions in different temporal phases on the same areas, which is able to promote the practical application of change detection algorithms. The ChangeNet dataset is suitable for both binary change detection (BCD) and semantic change detection (SCD) tasks. Accordingly, we benchmark the ChangeNet dataset on six BCD methods and two SCD methods, and extensive experiments demonstrate its challenges and great significance. The dataset is available at //github.com/jankyee/ChangeNet.
Recent real-time semantic segmentation methods usually adopt an additional semantic branch to pursue rich long-range context. However, the additional branch incurs undesirable computational overhead and slows inference speed. To eliminate this dilemma, we propose SCTNet, a single branch CNN with transformer semantic information for real-time segmentation. SCTNet enjoys the rich semantic representations of an inference-free semantic branch while retaining the high efficiency of lightweight single branch CNN. SCTNet utilizes a transformer as the training-only semantic branch considering its superb ability to extract long-range context. With the help of the proposed transformer-like CNN block CFBlock and the semantic information alignment module, SCTNet could capture the rich semantic information from the transformer branch in training. During the inference, only the single branch CNN needs to be deployed. We conduct extensive experiments on Cityscapes, ADE20K, and COCO-Stuff-10K, and the results show that our method achieves the new state-of-the-art performance. The code and model is available at //github.com/xzz777/SCTNet
Measuring the coherence of text is a vital aspect of evaluating the quality of written content. Recent advancements in neural coherence modeling have demonstrated their efficacy in capturing entity coreference and discourse relations, thereby enhancing coherence evaluation. However, many existing methods heavily depend on static embeddings or focus narrowly on nearby context, constraining their capacity to measure the overarching coherence of long texts. In this paper, we posit that coherent texts inherently manifest a sequential and cohesive interplay among sentences, effectively conveying the central theme, purpose, or standpoint. To explore this abstract relationship, we introduce the "BBScore," a novel reference-free metric grounded in Brownian bridge theory for assessing text coherence. Our findings showcase that when synergized with a simple additional classification component, this metric attains a performance level comparable to state-of-the-art techniques on standard artificial discrimination tasks. We also establish in downstream tasks that this metric effectively differentiates between human-written documents and text generated by large language models under a specific domain. Furthermore, we illustrate the efficacy of this approach in detecting written styles attributed to diverse large language models, underscoring its potential for generalizability. In summary, we present a novel Brownian bridge coherence metric capable of measuring both local and global text coherence, while circumventing the need for end-to-end model training. This flexibility allows for its application in various downstream tasks.
The Few-Shot Segmentation (FSS) aims to accomplish the novel class segmentation task with a few annotated images. Current FSS research based on meta-learning focus on designing a complex interaction mechanism between the query and support feature. However, unlike humans who can rapidly learn new things from limited samples, the existing approach relies solely on fixed feature matching to tackle new tasks, lacking adaptability. In this paper, we propose a novel framework based on the adapter mechanism, namely Adaptive FSS, which can efficiently adapt the existing FSS model to the novel classes. In detail, we design the Prototype Adaptive Module (PAM), which utilizes accurate category information provided by the support set to derive class prototypes, enhancing class-specific information in the multi-stage representation. In addition, our approach is compatible with in diverse FSS methods with different backbones by simply inserting PAM between the layers of the encoder. Experiments demonstrate that our method effectively improves the performance of the FSS models (e.g., MSANet, HDMNet, FPTrans, and DCAMA) and achieve new state-of-the-art (SOTA) results (i.e., 72.4\% and 79.1\% mIoU on PASCAL-5$^i$ 1-shot and 5-shot settings, 52.7\% and 60.0\% mIoU on COCO-20$^i$ 1-shot and 5-shot settings). Our code can be available at //github.com/jingw193/AdaptiveFSS.
Robot manipulation relies on accurately predicting contact points and end-effector directions to ensure successful operation. However, learning-based robot manipulation, trained on a limited category within a simulator, often struggles to achieve generalizability, especially when confronted with extensive categories. Therefore, we introduce an innovative approach for robot manipulation that leverages the robust reasoning capabilities of Multimodal Large Language Models (MLLMs) to enhance the stability and generalization of manipulation. By fine-tuning the injected adapters, we preserve the inherent common sense and reasoning ability of the MLLMs while equipping them with the ability for manipulation. The fundamental insight lies in the introduced fine-tuning paradigm, encompassing object category understanding, affordance prior reasoning, and object-centric pose prediction to stimulate the reasoning ability of MLLM in manipulation. During inference, our approach utilizes an RGB image and text prompt to predict the end effector's pose in chain of thoughts. After the initial contact is established, an active impedance adaptation policy is introduced to plan the upcoming waypoints in a closed-loop manner. Moreover, in real world, we design a test-time adaptation (TTA) strategy for manipulation to enable the model better adapt to the current real-world scene configuration. Experiments in simulator and real-world show the promising performance of ManipLLM. More details and demonstrations can be found at //sites.google.com/view/manipllm.
Despite the recent progress in Graph Neural Networks (GNNs), it remains challenging to explain the predictions made by GNNs. Existing explanation methods mainly focus on post-hoc explanations where another explanatory model is employed to provide explanations for a trained GNN. The fact that post-hoc methods fail to reveal the original reasoning process of GNNs raises the need of building GNNs with built-in interpretability. In this work, we propose Prototype Graph Neural Network (ProtGNN), which combines prototype learning with GNNs and provides a new perspective on the explanations of GNNs. In ProtGNN, the explanations are naturally derived from the case-based reasoning process and are actually used during classification. The prediction of ProtGNN is obtained by comparing the inputs to a few learned prototypes in the latent space. Furthermore, for better interpretability and higher efficiency, a novel conditional subgraph sampling module is incorporated to indicate which part of the input graph is most similar to each prototype in ProtGNN+. Finally, we evaluate our method on a wide range of datasets and perform concrete case studies. Extensive results show that ProtGNN and ProtGNN+ can provide inherent interpretability while achieving accuracy on par with the non-interpretable counterparts.
Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.
We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.
We construct targeted audio adversarial examples on automatic speech recognition. Given any audio waveform, we can produce another that is over 99.9% similar, but transcribes as any phrase we choose (at a rate of up to 50 characters per second). We apply our iterative optimization-based attack to Mozilla's implementation DeepSpeech end-to-end, and show it has a 100% success rate. The feasibility of this attack introduce a new domain to study adversarial examples.