亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Tropical semiring has proven successful in several research areas, including optimal control, bioinformatics, discrete event systems, or solving a decision problem. In previous studies, a matrix two-factorization algorithm based on the tropical semiring has been applied to investigate bipartite and tripartite networks. Tri-factorization algorithms based on standard linear algebra are used for solving tasks such as data fusion, co-clustering, matrix completion, community detection, and more. However, there is currently no tropical matrix tri-factorization approach, which would allow for the analysis of multipartite networks with a high number of parts. To address this, we propose the triFastSTMF algorithm, which performs tri-factorization over the tropical semiring. We apply it to analyze a four-partition network structure and recover the edge lengths of the network. We show that triFastSTMF performs similarly to Fast-NMTF in terms of approximation and prediction performance when fitted on the whole network. When trained on a specific subnetwork and used to predict the whole network, triFastSTMF outperforms Fast-NMTF by several orders of magnitude smaller error. The robustness of triFastSTMF is due to tropical operations, which are less prone to predict large values compared to standard operations.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

We consider the Sobolev embedding operator $E_s : H^s(\Omega) \to L_2(\Omega)$ and its role in the solution of inverse problems. In particular, we collect various properties and investigate different characterizations of its adjoint operator $E_s^*$, which is a common component in both iterative and variational regularization methods. These include variational representations and connections to boundary value problems, Fourier and wavelet representations, as well as connections to spatial filters. Moreover, we consider characterizations in terms of Fourier series, singular value decompositions and frame decompositions, as well as representations in finite dimensional settings. While many of these results are already known to researchers from different fields, a detailed and general overview or reference work containing rigorous mathematical proofs is still missing. Hence, in this paper we aim to fill this gap by collecting, introducing and generalizing a large number of characterizations of $E_s^*$ and discuss their use in regularization methods for solving inverse problems. The resulting compilation can serve both as a reference as well as a useful guide for its efficient numerical implementation in practice.

We study the structural and statistical properties of $\mathcal{R}$-norm minimizing interpolants of datasets labeled by specific target functions. The $\mathcal{R}$-norm is the basis of an inductive bias for two-layer neural networks, recently introduced to capture the functional effect of controlling the size of network weights, independently of the network width. We find that these interpolants are intrinsically multivariate functions, even when there are ridge functions that fit the data, and also that the $\mathcal{R}$-norm inductive bias is not sufficient for achieving statistically optimal generalization for certain learning problems. Altogether, these results shed new light on an inductive bias that is connected to practical neural network training.

Short Message Service (SMS) is a popular channel for online service providers to verify accounts and authenticate users registered to a particular service. Specialized applications, called Public SMS Gateways (PSGs), offer free Disposable Phone Numbers (DPNs) that can be used to receive SMS messages. DPNs allow users to protect their privacy when creating online accounts. However, they can also be abused for fraudulent activities and to bypass security mechanisms like Two-Factor Authentication (2FA). In this paper, we perform a large-scale and longitudinal study of the DPN ecosystem by monitoring 17,141 unique DPNs in 29 PSGs over the course of 12 months. Using a dataset of over 70M messages, we provide an overview of the ecosystem and study the different services that offer DPNs and their relationships. Next, we build a framework that (i) identifies and classifies the purpose of an SMS; and (ii) accurately attributes every message to more than 200 popular Internet services that require SMS for creating registered accounts. Our results indicate that the DPN ecosystem is globally used to support fraudulent account creation and access, and that this issue is ubiquitous and affects all major Internet platforms and specialized online services.

Recently, Meta-Auto-Decoder (MAD) was proposed as a novel reduced order model (ROM) for solving parametric partial differential equations (PDEs), and the best possible performance of this method can be quantified by the decoder width. This paper aims to provide a theoretical analysis related to the decoder width. The solution sets of several parametric PDEs are examined, and the upper bounds of the corresponding decoder widths are estimated. In addition to the elliptic and the parabolic equations on a fixed domain, we investigate the advection equations that present challenges for classical linear ROMs, as well as the elliptic equations with the computational domain shape as a variable PDE parameter. The resulting fast decay rates of the decoder widths indicate the promising potential of MAD in addressing these problems.

Within the next decade the Laser Interferometer Space Antenna (LISA) is due to be launched, providing the opportunity to extract physics from stellar objects and systems, such as \textit{Extreme Mass Ratio Inspirals}, (EMRIs) otherwise undetectable to ground based interferometers and Pulsar Timing Arrays (PTA). Unlike previous sources detected by the currently available observational methods, these sources can \textit{only} be simulated using an accurate computation of the gravitational self-force. Whereas the field has seen outstanding progress in the frequency domain, metric reconstruction and self-force calculations are still an open challenge in the time domain. Such computations would not only further corroborate frequency domain calculations and models, but also allow for full self-consistent evolution of the orbit under the effect of the self-force. Given we have \textit{a priori} information about the local structure of the discontinuity at the particle, we will show how to construct discontinuous spatial and temporal discretisations by operating on discontinuous Lagrange and Hermite interpolation formulae and hence recover higher order accuracy. In this work we demonstrate how this technique in conjunction with well-suited gauge choice (hyperboloidal slicing) and numerical (discontinuous collocation with time symmetric) methods can provide a relatively simple method of lines numerical algorithm to the problem. This is the first of a series of papers studying the behaviour of a point-particle prescribing circular geodesic motion in Schwarzschild in the \textit{time domain}. In this work we describe the numerical machinery necessary for these computations and show not only our work is capable of highly accurate flux radiation measurements but it also shows suitability for evaluation of the necessary field and it's derivatives at the particle limit.

Dimension reduction is crucial in functional data analysis (FDA). The key tool to reduce the dimension of the data is functional principal component analysis. Existing approaches for functional principal component analysis usually involve the diagonalization of the covariance operator. With the increasing size and complexity of functional datasets, estimating the covariance operator has become more challenging. Therefore, there is a growing need for efficient methodologies to estimate the eigencomponents. Using the duality of the space of observations and the space of functional features, we propose to use the inner-product between the curves to estimate the eigenelements of multivariate and multidimensional functional datasets. The relationship between the eigenelements of the covariance operator and those of the inner-product matrix is established. We explore the application of these methodologies in several FDA settings and provide general guidance on their usability.

Many multivariate data sets exhibit a form of positive dependence, which can either appear globally between all variables or only locally within particular subgroups. A popular notion of positive dependence that allows for localized positivity is positive association. In this work we introduce the notion of extremal positive association for multivariate extremes from threshold exceedances. Via a sufficient condition for extremal association, we show that extremal association generalizes extremal tree models. For H\"usler--Reiss distributions the sufficient condition permits a parametric description that we call the metric property. As the parameter of a H\"usler--Reiss distribution is a Euclidean distance matrix, the metric property relates to research in electrical network theory and Euclidean geometry. We show that the metric property can be localized with respect to a graph and study surrogate likelihood inference. This gives rise to a two-step estimation procedure for locally metrical H\"usler--Reiss graphical models. The second step allows for a simple dual problem, which is implemented via a gradient descent algorithm. Finally, we demonstrate our results on simulated and real data.

The optimal branch number of MDS matrices makes them a preferred choice for designing diffusion layers in many block ciphers and hash functions. Consequently, various methods have been proposed for designing MDS matrices, including search and direct methods. While exhaustive search is suitable for small order MDS matrices, direct constructions are preferred for larger orders due to the vast search space involved. In the literature, there has been extensive research on the direct construction of MDS matrices using both recursive and nonrecursive methods. On the other hand, in lightweight cryptography, Near-MDS (NMDS) matrices with sub-optimal branch numbers offer a better balance between security and efficiency as a diffusion layer compared to MDS matrices. However, no direct construction method is available in the literature for constructing recursive NMDS matrices. This paper introduces some direct constructions of NMDS matrices in both nonrecursive and recursive settings. Additionally, it presents some direct constructions of nonrecursive MDS matrices from the generalized Vandermonde matrices. We propose a method for constructing involutory MDS and NMDS matrices using generalized Vandermonde matrices. Furthermore, we prove some folklore results that are used in the literature related to the NMDS code.

The optimal branch number of MDS matrices makes them a preferred choice for designing diffusion layers in many block ciphers and hash functions. However, in lightweight cryptography, Near-MDS (NMDS) matrices with sub-optimal branch numbers offer a better balance between security and efficiency as a diffusion layer, compared to MDS matrices. In this paper, we study NMDS matrices, exploring their construction in both recursive and nonrecursive settings. We provide several theoretical results and explore the hardware efficiency of the construction of NMDS matrices. Additionally, we make comparisons between the results of NMDS and MDS matrices whenever possible. For the recursive approach, we study the DLS matrices and provide some theoretical results on their use. Some of the results are used to restrict the search space of the DLS matrices. We also show that over a field of characteristic 2, any sparse matrix of order $n\geq 4$ with fixed XOR value of 1 cannot be an NMDS when raised to a power of $k\leq n$. Following that, we use the generalized DLS (GDLS) matrices to provide some lightweight recursive NMDS matrices of several orders that perform better than the existing matrices in terms of hardware cost or the number of iterations. For the nonrecursive construction of NMDS matrices, we study various structures, such as circulant and left-circulant matrices, and their generalizations: Toeplitz and Hankel matrices. In addition, we prove that Toeplitz matrices of order $n>4$ cannot be simultaneously NMDS and involutory over a field of characteristic 2. Finally, we use GDLS matrices to provide some lightweight NMDS matrices that can be computed in one clock cycle. The proposed nonrecursive NMDS matrices of orders 4, 5, 6, 7, and 8 can be implemented with 24, 50, 65, 96, and 108 XORs over $\mathbb{F}_{2^4}$, respectively.

Substantial progress has been made recently on developing provably accurate and efficient algorithms for low-rank matrix factorization via nonconvex optimization. While conventional wisdom often takes a dim view of nonconvex optimization algorithms due to their susceptibility to spurious local minima, simple iterative methods such as gradient descent have been remarkably successful in practice. The theoretical footings, however, had been largely lacking until recently. In this tutorial-style overview, we highlight the important role of statistical models in enabling efficient nonconvex optimization with performance guarantees. We review two contrasting approaches: (1) two-stage algorithms, which consist of a tailored initialization step followed by successive refinement; and (2) global landscape analysis and initialization-free algorithms. Several canonical matrix factorization problems are discussed, including but not limited to matrix sensing, phase retrieval, matrix completion, blind deconvolution, robust principal component analysis, phase synchronization, and joint alignment. Special care is taken to illustrate the key technical insights underlying their analyses. This article serves as a testament that the integrated consideration of optimization and statistics leads to fruitful research findings.

北京阿比特科技有限公司