亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As deep learning is now used in many real-world applications, research has focused increasingly on the privacy of deep learning models and how to prevent attackers from obtaining sensitive information about the training data. However, image-text models like CLIP have not yet been looked at in the context of privacy attacks. While membership inference attacks aim to tell whether a specific data point was used for training, we introduce a new type of privacy attack, named identity inference attack (IDIA), designed for multi-modal image-text models like CLIP. Using IDIAs, an attacker can reveal whether a particular person, was part of the training data by querying the model in a black-box fashion with different images of the same person. Letting the model choose from a wide variety of possible text labels, the attacker can probe the model whether it recognizes the person and, therefore, was used for training. Through several experiments on CLIP, we show that the attacker can identify individuals used for training with very high accuracy and that the model learns to connect the names with the depicted people. Our experiments show that a multi-modal image-text model indeed leaks sensitive information about its training data and, therefore, should be handled with care.

相關內容

Machine learning (ML) models are costly to train as they can require a significant amount of data, computational resources and technical expertise. Thus, they constitute valuable intellectual property that needs protection from adversaries wanting to steal them. Ownership verification techniques allow the victims of model stealing attacks to demonstrate that a suspect model was in fact stolen from theirs. Although a number of ownership verification techniques based on watermarking or fingerprinting have been proposed, most of them fall short either in terms of security guarantees (well-equipped adversaries can evade verification) or computational cost. A fingerprinting technique introduced at ICLR '21, Dataset Inference (DI), has been shown to offer better robustness and efficiency than prior methods. The authors of DI provided a correctness proof for linear (suspect) models. However, in the same setting, we prove that DI suffers from high false positives (FPs) -- it can incorrectly identify an independent model trained with non-overlapping data from the same distribution as stolen. We further prove that DI also triggers FPs in realistic, non-linear suspect models. We then confirm empirically that DI leads to FPs, with high confidence. Second, we show that DI also suffers from false negatives (FNs) -- an adversary can fool DI by regularising a stolen model's decision boundaries using adversarial training, thereby leading to an FN. To this end, we demonstrate that DI fails to identify a model adversarially trained from a stolen dataset -- the setting where DI is the hardest to evade. Finally, we discuss the implications of our findings, the viability of fingerprinting-based ownership verification in general, and suggest directions for future work.

Recent advances in federated learning have demonstrated its promising capability to learn on decentralized datasets. However, a considerable amount of work has raised concerns due to the potential risks of adversaries participating in the framework to poison the global model for an adversarial purpose. This paper investigates the feasibility of model poisoning for backdoor attacks through rare word embeddings of NLP models. In text classification, less than 1% of adversary clients suffices to manipulate the model output without any drop in the performance on clean sentences. For a less complex dataset, a mere 0.1% of adversary clients is enough to poison the global model effectively. We also propose a technique specialized in the federated learning scheme called Gradient Ensemble, which enhances the backdoor performance in all our experimental settings.

An appropriate level of arousal induces positive emotions, and a high arousal potential may provoke negative emotions. To explain the effect of arousal on emotional valence, we propose a novel mathematical framework of arousal potential variations in the dual process of human cognition: automatic and controlled. A suitable mathematical formulation to explain the emotions in the dual process is still absent. Our model associates free energy with arousal potential and its variations to explain emotional valence. Decreasing and increasing free energy consequently induce positive and negative emotions, respectively. We formalize a transition from the automatic to the controlled process in the dual process as a change of Bayesian prior. Further, we model emotional valence using free energy increase (FI) when one tries changing one's Bayesian prior and its reduction (FR) when one succeeds in recognizing the same stimuli with a changed prior and define three emotions: "interest," "confusion," and "boredom" using the variations. The results of our mathematical analysis comparing various Gaussian model parameters reveals the following: 1) prediction error (PR) increases FR (representing "interest") when the first prior variance is greater than the second prior variance, 2) PR decreases FR when the first prior variance is less than the second prior variance, and 3) the distance between priors' means always increases FR. We also discuss the association of the outcomes with emotions in the controlled process. The proposed mathematical model provides a general framework for predicting and controlling emotional valence in the dual process that varies with viewpoint and stimuli, as well as for understanding the contradictions in the effects of arousal on the valence.

Users today expect more security from services that handle their data. In addition to traditional data privacy and integrity requirements, they expect transparency, i.e., that the service's processing of the data is verifiable by users and trusted auditors. Our goal is to build a multi-user system that provides data privacy, integrity, and transparency for a large number of operations, while achieving practical performance. To this end, we first identify the limitations of existing approaches that use authenticated data structures. We find that they fall into two categories: 1) those that hide each user's data from other users, but have a limited range of verifiable operations (e.g., CONIKS, Merkle2, and Proofs of Liabilities), and 2) those that support a wide range of verifiable operations, but make all data publicly visible (e.g., IntegriDB and FalconDB). We then present TAP to address the above limitations. The key component of TAP is a novel tree data structure that supports efficient result verification, and relies on independent audits that use zero-knowledge range proofs to show that the tree is constructed correctly without revealing user data. TAP supports a broad range of verifiable operations, including quantiles and sample standard deviations. We conduct a comprehensive evaluation of TAP, and compare it against two state-of-the-art baselines, namely IntegriDB and Merkle2, showing that the system is practical at scale.

Most recent studies have shown several vulnerabilities to attacks with the potential to jeopardize the integrity of the model, opening in a few recent years a new window of opportunity in terms of cyber-security. The main interest of this paper is directed towards data poisoning attacks involving label-flipping, this kind of attacks occur during the training phase, being the aim of the attacker to compromise the integrity of the targeted machine learning model by drastically reducing the overall accuracy of the model and/or achieving the missclassification of determined samples. This paper is conducted with intention of proposing two new kinds of data poisoning attacks based on label-flipping, the targeted of the attack is represented by a variety of machine learning classifiers dedicated for malware detection using mobile exfiltration data. With that, the proposed attacks are proven to be model-agnostic, having successfully corrupted a wide variety of machine learning models; Logistic Regression, Decision Tree, Random Forest and KNN are some examples. The first attack is performs label-flipping actions randomly while the second attacks performs label flipping only one of the 2 classes in particular. The effects of each attack are analyzed in further detail with special emphasis on the accuracy drop and the misclassification rate. Finally, this paper pursuits further research direction by suggesting the development of a defense technique that could promise a feasible detection and/or mitigation mechanisms; such technique should be capable of conferring a certain level of robustness to a target model against potential attackers.

Named Entity Recognition (NER) on social media refers to discovering and classifying entities from unstructured free-form content, and it plays an important role for various applications such as intention understanding and user recommendation. With social media posts tending to be multimodal, Multimodal Named Entity Recognition (MNER) for the text with its accompanying image is attracting more and more attention since some textual components can only be understood in combination with visual information. However, there are two drawbacks in existing approaches: 1) Meanings of the text and its accompanying image do not match always, so the text information still plays a major role. However, social media posts are usually shorter and more informal compared with other normal contents, which easily causes incomplete semantic description and the data sparsity problem. 2) Although the visual representations of whole images or objects are already used, existing methods ignore either fine-grained semantic correspondence between objects in images and words in text or the objective fact that there are misleading objects or no objects in some images. In this work, we solve the above two problems by introducing the multi-granularity cross-modality representation learning. To resolve the first problem, we enhance the representation by semantic augmentation for each word in text. As for the second issue, we perform the cross-modality semantic interaction between text and vision at the different vision granularity to get the most effective multimodal guidance representation for every word. Experiments show that our proposed approach can achieve the SOTA or approximate SOTA performance on two benchmark datasets of tweets. The code, data and the best performing models are available at //github.com/LiuPeiP-CS/IIE4MNER

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics, for decades. Nowadays, estimating causal effect from observational data has become an appealing research direction owing to the large amount of available data and low budget requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine learning area, various causal effect estimation methods for observational data have sprung up. In this survey, we provide a comprehensive review of causal inference methods under the potential outcome framework, one of the well known causal inference framework. The methods are divided into two categories depending on whether they require all three assumptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. The plausible applications of these methods are also presented, including the applications in advertising, recommendation, medicine and so on. Moreover, the commonly used benchmark datasets as well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore, evaluate and apply the causal inference methods.

Transfer learning aims at improving the performance of target learners on target domains by transferring the knowledge contained in different but related source domains. In this way, the dependence on a large number of target domain data can be reduced for constructing target learners. Due to the wide application prospects, transfer learning has become a popular and promising area in machine learning. Although there are already some valuable and impressive surveys on transfer learning, these surveys introduce approaches in a relatively isolated way and lack the recent advances in transfer learning. As the rapid expansion of the transfer learning area, it is both necessary and challenging to comprehensively review the relevant studies. This survey attempts to connect and systematize the existing transfer learning researches, as well as to summarize and interpret the mechanisms and the strategies in a comprehensive way, which may help readers have a better understanding of the current research status and ideas. Different from previous surveys, this survey paper reviews over forty representative transfer learning approaches from the perspectives of data and model. The applications of transfer learning are also briefly introduced. In order to show the performance of different transfer learning models, twenty representative transfer learning models are used for experiments. The models are performed on three different datasets, i.e., Amazon Reviews, Reuters-21578, and Office-31. And the experimental results demonstrate the importance of selecting appropriate transfer learning models for different applications in practice.

Machine-learning models have demonstrated great success in learning complex patterns that enable them to make predictions about unobserved data. In addition to using models for prediction, the ability to interpret what a model has learned is receiving an increasing amount of attention. However, this increased focus has led to considerable confusion about the notion of interpretability. In particular, it is unclear how the wide array of proposed interpretation methods are related, and what common concepts can be used to evaluate them. We aim to address these concerns by defining interpretability in the context of machine learning and introducing the Predictive, Descriptive, Relevant (PDR) framework for discussing interpretations. The PDR framework provides three overarching desiderata for evaluation: predictive accuracy, descriptive accuracy and relevancy, with relevancy judged relative to a human audience. Moreover, to help manage the deluge of interpretation methods, we introduce a categorization of existing techniques into model-based and post-hoc categories, with sub-groups including sparsity, modularity and simulatability. To demonstrate how practitioners can use the PDR framework to evaluate and understand interpretations, we provide numerous real-world examples. These examples highlight the often under-appreciated role played by human audiences in discussions of interpretability. Finally, based on our framework, we discuss limitations of existing methods and directions for future work. We hope that this work will provide a common vocabulary that will make it easier for both practitioners and researchers to discuss and choose from the full range of interpretation methods.

北京阿比特科技有限公司