Machine unlearning is motivated by desire for data autonomy: a person can request to have their data's influence removed from deployed models, and those models should be updated as if they were retrained without the person's data. We show that, counter-intuitively, these updates expose individuals to high-accuracy reconstruction attacks which allow the attacker to recover their data in its entirety, even when the original models are so simple that privacy risk might not otherwise have been a concern. We show how to mount a near-perfect attack on the deleted data point from linear regression models. We then generalize our attack to other loss functions and architectures, and empirically demonstrate the effectiveness of our attacks across a wide range of datasets (capturing both tabular and image data). Our work highlights that privacy risk is significant even for extremely simple model classes when individuals can request deletion of their data from the model.
Privacy is a central challenge for systems that learn from sensitive data sets, especially when a system's outputs must be continuously updated to reflect changing data. We consider the achievable error for differentially private continual release of a basic statistic - the number of distinct items - in a stream where items may be both inserted and deleted (the turnstile model). With only insertions, existing algorithms have additive error just polylogarithmic in the length of the stream $T$. We uncover a much richer landscape in the turnstile model, even without considering memory restrictions. We show that every differentially private mechanism that handles insertions and deletions has worst-case additive error at least $T^{1/4}$ even under a relatively weak, event-level privacy definition. Then, we identify a parameter of the input stream, its maximum flippancy, that is low for natural data streams and for which we give tight parameterized error guarantees. Specifically, the maximum flippancy is the largest number of times that the contribution of a single item to the distinct elements count changes over the course of the stream. We present an item-level differentially private mechanism that, for all turnstile streams with maximum flippancy $w$, continually outputs the number of distinct elements with an $O(\sqrt{w} \cdot poly\log T)$ additive error, without requiring prior knowledge of $w$. We prove that this is the best achievable error bound that depends only on $w$, for a large range of values of $w$. When $w$ is small, the error of our mechanism is similar to the polylogarithmic in $T$ error in the insertion-only setting, bypassing the hardness in the turnstile model.
In distributed computing by mobile robots, robots are deployed over a region, continuous or discrete, operating through a sequence of \textit{look-compute-move} cycles. An extensive study has been carried out to understand the computational powers of different robot models. The models vary on the ability to 1)~remember constant size information and 2)~communicate constant size message. Depending on the abilities the different models are 1)~$\mathcal{OBLOT}$ (robots are oblivious and silent), 2)~$\mathcal{FSTA}$ (robots have finite states but silent), 3)~$\mathcal{FCOM}$ (robots are oblivious but can communicate constant size information) and, 4)~$\mathcal{LUMI}$ (robots have finite states and can communicate constant size information). Another factor that affects computational ability is the scheduler that decides the activation time of the robots. The main three schedulers are \textit{fully-synchronous}, \textit{semi-synchronous} and \textit{asynchronous}. Combining the models ($M$) with schedulers ($K$), we have twelve combinations $M^K$. In the euclidean domain, the comparisons between these twelve variants have been done in different works for transparent robots, opaque robots, and robots with limited visibility. There is a vacant space for similar works when robots are operating on discrete regions like networks. It demands separate research attention because there have been a series of works where robots operate on different networks, and there is a fundamental difference when robots are operating on a continuous domain versus a discrete domain in terms of robots' movement. This work contributes to filling the space by giving a full comparison table for all models with two synchronous schedulers: fully-synchronous and semi-synchronous.
Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.
Graphs are important data representations for describing objects and their relationships, which appear in a wide diversity of real-world scenarios. As one of a critical problem in this area, graph generation considers learning the distributions of given graphs and generating more novel graphs. Owing to their wide range of applications, generative models for graphs, which have a rich history, however, are traditionally hand-crafted and only capable of modeling a few statistical properties of graphs. Recent advances in deep generative models for graph generation is an important step towards improving the fidelity of generated graphs and paves the way for new kinds of applications. This article provides an extensive overview of the literature in the field of deep generative models for graph generation. Firstly, the formal definition of deep generative models for the graph generation and the preliminary knowledge are provided. Secondly, taxonomies of deep generative models for both unconditional and conditional graph generation are proposed respectively; the existing works of each are compared and analyzed. After that, an overview of the evaluation metrics in this specific domain is provided. Finally, the applications that deep graph generation enables are summarized and five promising future research directions are highlighted.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Deep learning-based algorithms have seen a massive popularity in different areas of remote sensing image analysis over the past decade. Recently, transformers-based architectures, originally introduced in natural language processing, have pervaded computer vision field where the self-attention mechanism has been utilized as a replacement to the popular convolution operator for capturing long-range dependencies. Inspired by recent advances in computer vision, remote sensing community has also witnessed an increased exploration of vision transformers for a diverse set of tasks. Although a number of surveys have focused on transformers in computer vision in general, to the best of our knowledge we are the first to present a systematic review of recent advances based on transformers in remote sensing. Our survey covers more than 60 recent transformers-based methods for different remote sensing problems in sub-areas of remote sensing: very high-resolution (VHR), hyperspectral (HSI) and synthetic aperture radar (SAR) imagery. We conclude the survey by discussing different challenges and open issues of transformers in remote sensing. Additionally, we intend to frequently update and maintain the latest transformers in remote sensing papers with their respective code at: //github.com/VIROBO-15/Transformer-in-Remote-Sensing
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.