亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce DAiSEE, the largest multi-label video classification dataset comprising of over two-and-a-half million video frames (2,723,882), 9068 video snippets (about 25 hours of recording) captured from 112 users for recognizing user affective states, including engagement, in the wild. In addition to engagement, it also includes associated affective states of boredom, confusion, and frustration, which are relevant to such applications. The dataset has four levels of labels from very low to very high for each of the affective states, collected using crowd annotators and correlated with a gold standard annotation obtained from a team of expert psychologists. We have also included benchmark results on this dataset using state-of-the-art video classification methods that are available today, and the baselines on each of the labels is included with this dataset. To the best of our knowledge, DAiSEE is the first and largest such dataset in this domain. We believe that DAiSEE will provide the research community with challenges in feature extraction, context-based inference, and development of suitable machine learning methods for related tasks, thus providing a springboard for further research.

相關內容

Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

3D Morphable Model (3DMM) based methods have achieved great success in recovering 3D face shapes from single-view images. However, the facial textures recovered by such methods lack the fidelity as exhibited in the input images. Recent work demonstrates high-quality facial texture recovering with generative networks trained from a large-scale database of high-resolution UV maps of face textures, which is hard to prepare and not publicly available. In this paper, we introduce a method to reconstruct 3D facial shapes with high-fidelity textures from single-view images in-the-wild, without the need to capture a large-scale face texture database. The main idea is to refine the initial texture generated by a 3DMM based method with facial details from the input image. To this end, we propose to use graph convolutional networks to reconstruct the detailed colors for the mesh vertices instead of reconstructing the UV map. Experiments show that our method can generate high-quality results and outperforms state-of-the-art methods in both qualitative and quantitative comparisons.

Named Entity Recognition (NER) plays an important role in a wide range of natural language processing tasks, such as relation extraction, question answering, etc. However, previous studies on NER are limited to a particular genre, using small manually-annotated or large but low-quality datasets. In this work, we propose a semi-supervised annotation framework to make full use of abstracts from Wikipedia and obtain a large and high-quality dataset called AnchorNER. We assume anchored strings in abstracts are named entities and annotate them with entity types mentioned in DBpedia. To improve the coverage, we design a neural correction model trained with a human-annotated NER dataset, DocRED, to correct the false-negative entity labels, and then train a BERT model with the corrected dataset. We evaluate our trained model on six NER datasets and our experimental results show that we have obtained state-of-the-art open-domain performances --- on top of the strong baselines BERT-base and BERT-large, we achieve relative improvements of 4.66% and 3.07% respectively.

With the rise and development of deep learning, computer vision has been tremendously transformed and reshaped. As an important research area in computer vision, scene text detection and recognition has been inescapably influenced by this wave of revolution, consequentially entering the era of deep learning. In recent years, the community has witnessed substantial advancements in mindset, approach and performance. This survey is aimed at summarizing and analyzing the major changes and significant progresses of scene text detection and recognition in the deep learning era. Through this article, we devote to: (1) introduce new insights and ideas; (2) highlight recent techniques and benchmarks; (3) look ahead into future trends. Specifically, we will emphasize the dramatic differences brought by deep learning and the grand challenges still remained. We expect that this review paper would serve as a reference book for researchers in this field. Related resources are also collected and compiled in our Github repository: //github.com/Jyouhou/SceneTextPapers.

This paper presents a novel framework, MGNER, for Multi-Grained Named Entity Recognition where multiple entities or entity mentions in a sentence could be non-overlapping or totally nested. Different from traditional approaches regarding NER as a sequential labeling task and annotate entities consecutively, MGNER detects and recognizes entities on multiple granularities: it is able to recognize named entities without explicitly assuming non-overlapping or totally nested structures. MGNER consists of a Detector that examines all possible word segments and a Classifier that categorizes entities. In addition, contextual information and a self-attention mechanism are utilized throughout the framework to improve the NER performance. Experimental results show that MGNER outperforms current state-of-the-art baselines up to 4.4% in terms of the F1 score among nested/non-overlapping NER tasks.

We describe a DNN for fine-grained action classification and video captioning. It gives state-of-the-art performance on the challenging Something-Something dataset, with over 220, 000 videos and 174 fine-grained actions. Classification and captioning on this dataset are challenging because of the subtle differences between actions, the use of thousands of different objects, and the diversity of captions penned by crowd actors. The model architecture shares features for classification and captioning, and is trained end-to-end. It performs much better than the existing classification benchmark for Something-Something, with impressive fine-grained results, and it yields a strong baseline on the new Something-Something captioning task. Our results reveal that there is a strong correlation between the degree of detail in the task and the ability of the learned features to transfer to other tasks.

In this paper, we introduce a challenging new dataset, MLB-YouTube, designed for fine-grained activity detection. The dataset contains two settings: segmented video classification as well as activity detection in continuous videos. We experimentally compare various recognition approaches capturing temporal structure in activity videos, by classifying segmented videos and extending those approaches to continuous videos. We also compare models on the extremely difficult task of predicting pitch speed and pitch type from broadcast baseball videos. We find that learning temporal structure is valuable for fine-grained activity recognition.

Despite the numerous developments in object tracking, further development of current tracking algorithms is limited by small and mostly saturated datasets. As a matter of fact, data-hungry trackers based on deep-learning currently rely on object detection datasets due to the scarcity of dedicated large-scale tracking datasets. In this work, we present TrackingNet, the first large-scale dataset and benchmark for object tracking in the wild. We provide more than 30K videos with more than 14 million dense bounding box annotations. Our dataset covers a wide selection of object classes in broad and diverse context. By releasing such a large-scale dataset, we expect deep trackers to further improve and generalize. In addition, we introduce a new benchmark composed of 500 novel videos, modeled with a distribution similar to our training dataset. By sequestering the annotation of the test set and providing an online evaluation server, we provide a fair benchmark for future development of object trackers. Deep trackers fine-tuned on a fraction of our dataset improve their performance by up to 1.6% on OTB100 and up to 1.7% on TrackingNet Test. We provide an extensive benchmark on TrackingNet by evaluating more than 20 trackers. Our results suggest that object tracking in the wild is far from being solved.

Current methods for video analysis often extract frame-level features using pre-trained convolutional neural networks (CNNs). Such features are then aggregated over time e.g., by simple temporal averaging or more sophisticated recurrent neural networks such as long short-term memory (LSTM) or gated recurrent units (GRU). In this work we revise existing video representations and study alternative methods for temporal aggregation. We first explore clustering-based aggregation layers and propose a two-stream architecture aggregating audio and visual features. We then introduce a learnable non-linear unit, named Context Gating, aiming to model interdependencies among network activations. Our experimental results show the advantage of both improvements for the task of video classification. In particular, we evaluate our method on the large-scale multi-modal Youtube-8M v2 dataset and outperform all other methods in the Youtube 8M Large-Scale Video Understanding challenge.

北京阿比特科技有限公司