亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Composing simple elements into complex concepts is crucial yet challenging, especially for 3D action generation. Existing methods largely rely on extensive neural language annotations to discern composable latent semantics, a process that is often costly and labor-intensive. In this study, we introduce a novel framework to generate compositional actions without reliance on language auxiliaries. Our approach consists of three main components: Action Coupling, Conditional Action Generation, and Decoupling Refinement. Action Coupling utilizes an energy model to extract the attention masks of each sub-action, subsequently integrating two actions using these attentions to generate pseudo-training examples. Then, we employ a conditional generative model, CVAE, to learn a latent space, facilitating the diverse generation. Finally, we propose Decoupling Refinement, which leverages a self-supervised pre-trained model MAE to ensure semantic consistency between the sub-actions and compositional actions. This refinement process involves rendering generated 3D actions into 2D space, decoupling these images into two sub-segments, using the MAE model to restore the complete image from sub-segments, and constraining the recovered images to match images rendered from raw sub-actions. Due to the lack of existing datasets containing both sub-actions and compositional actions, we created two new datasets, named HumanAct-C and UESTC-C, and present a corresponding evaluation metric. Both qualitative and quantitative assessments are conducted to show our efficacy.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · · 語言模型化 · Learning · 大語言模型 ·
2024 年 2 月 19 日

Text-Attributed Graphs (TAGs) are graphs of connected textual documents. Graph models can efficiently learn TAGs, but their training heavily relies on human-annotated labels, which are scarce or even unavailable in many applications. Large language models (LLMs) have recently demonstrated remarkable capabilities in few-shot and zero-shot TAG learning, but they suffer from scalability, cost, and privacy issues. Therefore, in this work, we focus on synergizing LLMs and graph models with their complementary strengths by distilling the power of LLMs to a local graph model on TAG learning. To address the inherent gaps between LLMs (generative models for texts) and graph models (discriminative models for graphs), we propose first to let LLMs teach an interpreter with rich textual rationale and then let a student model mimic the interpreter's reasoning without LLMs' textual rationale. Extensive experiments validate the efficacy of our proposed framework.

Contextualized embeddings are the preferred tool for modeling Lexical Semantic Change (LSC). Current evaluations typically focus on a specific task known as Graded Change Detection (GCD). However, performance comparison across work are often misleading due to their reliance on diverse settings. In this paper, we evaluate state-of-the-art models and approaches for GCD under equal conditions. We further break the LSC problem into Word-in-Context (WiC) and Word Sense Induction (WSI) tasks, and compare models across these different levels. Our evaluation is performed across different languages on eight available benchmarks for LSC, and shows that (i) APD outperforms other approaches for GCD; (ii) XL-LEXEME outperforms other contextualized models for WiC, WSI, and GCD, while being comparable to GPT-4; (iii) there is a clear need for improving the modeling of word meanings, as well as focus on how, when, and why these meanings change, rather than solely focusing on the extent of semantic change.

In robotic manipulation, preventing objects from slipping and establishing a secure grip on them is critical. Successful manipulation requires tactile sensors that detect the microscopic incipient slip phenomenon at the contact surface. Unfortunately, the tiny signals generated by incipient slip are quickly buried by environmental noise, and precise stress-distribution measurement requires an extensive optical system and integrated circuits. In this study, we focus on the macroscopic deformation of the entire fingertip's soft structure instead of directly observing the contact surface and its role as a vibration medium for sensing. The proposed method compresses the stick ratio's information into a one-dimensional pressure signal using the change in the propagation characteristics by vibration injection into the soft structure, which magnifies the microscopic incipient slip phenomena into the entire deformation. This mechanism allows a tactile sensor to use just a single vibration sensor. In the implemented system, a biomimetic tactile sensor is vibrated using a white signal from a PZT motor and utilizes frequency spectrum change of the propagated vibration as features. We investigated the proposed method's effectiveness on stick-ratio estimation and \red{stick-ratio stabilization} control during incipient slip. Our estimation error and the control performance results significantly outperformed the conventional methods.

Structured sparsity is an efficient way to prune the complexity of modern Machine Learning (ML) applications and to simplify the handling of sparse data in hardware. In such cases, the acceleration of structured-sparse ML models is handled by sparse systolic tensor arrays. The increasing prevalence of ML in safety-critical systems requires enhancing the sparse tensor arrays with online error detection for managing random hardware failures. Algorithm-based fault tolerance has been proposed as a low-cost mechanism to check online the result of computations against random hardware failures. In this work, we address a key architectural challenge with structured-sparse tensor arrays: how to provide online error checking for a range of structured sparsity levels while maintaining high utilization of the hardware. Experimental results highlight the minimum hardware overhead incurred by the proposed checking logic and its error detection properties after injecting random hardware faults on sparse tensor arrays that execute layers of ResNet50 CNN.

Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.

Graph Neural Networks (GNNs) have proven to be useful for many different practical applications. However, many existing GNN models have implicitly assumed homophily among the nodes connected in the graph, and therefore have largely overlooked the important setting of heterophily, where most connected nodes are from different classes. In this work, we propose a novel framework called CPGNN that generalizes GNNs for graphs with either homophily or heterophily. The proposed framework incorporates an interpretable compatibility matrix for modeling the heterophily or homophily level in the graph, which can be learned in an end-to-end fashion, enabling it to go beyond the assumption of strong homophily. Theoretically, we show that replacing the compatibility matrix in our framework with the identity (which represents pure homophily) reduces to GCN. Our extensive experiments demonstrate the effectiveness of our approach in more realistic and challenging experimental settings with significantly less training data compared to previous works: CPGNN variants achieve state-of-the-art results in heterophily settings with or without contextual node features, while maintaining comparable performance in homophily settings.

This paper explores meta-learning in sequential recommendation to alleviate the item cold-start problem. Sequential recommendation aims to capture user's dynamic preferences based on historical behavior sequences and acts as a key component of most online recommendation scenarios. However, most previous methods have trouble recommending cold-start items, which are prevalent in those scenarios. As there is generally no side information in the setting of sequential recommendation task, previous cold-start methods could not be applied when only user-item interactions are available. Thus, we propose a Meta-learning-based Cold-Start Sequential Recommendation Framework, namely Mecos, to mitigate the item cold-start problem in sequential recommendation. This task is non-trivial as it targets at an important problem in a novel and challenging context. Mecos effectively extracts user preference from limited interactions and learns to match the target cold-start item with the potential user. Besides, our framework can be painlessly integrated with neural network-based models. Extensive experiments conducted on three real-world datasets verify the superiority of Mecos, with the average improvement up to 99%, 91%, and 70% in HR@10 over state-of-the-art baseline methods.

Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.

Manually labeling objects by tracing their boundaries is a laborious process. In Polygon-RNN++ the authors proposed Polygon-RNN that produces polygonal annotations in a recurrent manner using a CNN-RNN architecture, allowing interactive correction via humans-in-the-loop. We propose a new framework that alleviates the sequential nature of Polygon-RNN, by predicting all vertices simultaneously using a Graph Convolutional Network (GCN). Our model is trained end-to-end. It supports object annotation by either polygons or splines, facilitating labeling efficiency for both line-based and curved objects. We show that Curve-GCN outperforms all existing approaches in automatic mode, including the powerful PSP-DeepLab and is significantly more efficient in interactive mode than Polygon-RNN++. Our model runs at 29.3ms in automatic, and 2.6ms in interactive mode, making it 10x and 100x faster than Polygon-RNN++.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

北京阿比特科技有限公司