亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Forecasting, to estimate future events, is crucial for business and decision-making. This paper proposes QxEAI, a methodology that produces a probabilistic forecast that utilizes a quantum-like evolutionary algorithm based on training a quantum-like logic decision tree and a classical value tree on a small number of related time series. We demonstrate how the application of our quantum-like evolutionary algorithm to forecasting can overcome the challenges faced by classical and other machine learning approaches. By using three real-world datasets (Dow Jones Index, retail sales, gas consumption), we show how our methodology produces accurate forecasts while requiring little to none manual work.

相關內容

Automator是蘋果公司為他們的Mac OS X系統開發的一款軟件。 只要通過點擊拖拽鼠標等操作就可以將一系列動作組合成一個工作流,從而幫助你自動的(可重復的)完成一些復雜的工作。Automator還能橫跨很多不同種類的程序,包括:查找器、Safari網絡瀏覽器、iCal、地址簿或者其他的一些程序。它還能和一些第三方的程序一起工作,如微軟的Office、Adobe公司的Photoshop或者Pixelmator等。

Krylov subspace methods are extensively used in scientific computing to solve large-scale linear systems. However, the performance of these iterative Krylov solvers on modern supercomputers is limited by expensive communication costs. The $s$-step strategy generates a series of $s$ Krylov vectors at a time to avoid communication. Asymptotically, the $s$-step approach can reduce communication latency by a factor of $s$. Unfortunately, due to finite-precision implementation, the step size has to be kept small for stability. In this work, we tackle the numerical instabilities encountered in the $s$-step GMRES algorithm. By choosing an appropriate polynomial basis and block orthogonalization schemes, we construct a communication avoiding $s$-step GMRES algorithm that automatically selects the optimal step size to ensure numerical stability. To further maximize communication savings, we introduce scaled Newton polynomials that can increase the step size $s$ to a few hundreds for many problems. An initial step size estimator is also developed to efficiently choose the optimal step size for stability. The guaranteed stability of the proposed algorithm is demonstrated using numerical experiments. In the process, we also evaluate how the choice of polynomial and preconditioning affects the stability limit of the algorithm. Finally, we show parallel scalability on more than 114,000 cores in a distributed-memory setting. Perfectly linear scaling has been observed in both strong and weak scaling studies with negligible communication costs.

This paper introduces Patched MOA (Mixture of Agents), an inference optimization technique that significantly enhances the performance of large language models (LLMs) across diverse software development tasks. We evaluate three inference optimization algorithms - Best of N, Mixture of Agents, and Monte Carlo Tree Search and demonstrate that Patched MOA can boost the performance of smaller models to surpass that of larger, more expensive models. Notably, our approach improves the gpt-4o-mini model's performance on the Arena-Hard-Auto benchmark by 15.52%, outperforming gpt-4-turbo at a fraction of the cost. We also apply Patched MOA to various software development workflows, showing consistent improvements in task completion rates. Our method is model-agnostic, transparent to end-users, and can be easily integrated into existing LLM pipelines. This work contributes to the growing field of LLM optimization, offering a cost-effective solution for enhancing model performance without the need for fine-tuning or larger models.

As Neural Radiance Field (NeRF) implementations become faster, more efficient and accurate, their applicability to real world mapping tasks becomes more accessible. Traditionally, 3D mapping, or scene reconstruction, has relied on expensive LiDAR sensing. Photogrammetry can perform image-based 3D reconstruction but is computationally expensive and requires extremely dense image representation to recover complex geometry and photorealism. NeRFs perform 3D scene reconstruction by training a neural network on sparse image and pose data, achieving superior results to photogrammetry with less input data. This paper presents an evaluation of two NeRF scene reconstructions for the purpose of estimating the diameter of a vertical PVC cylinder. One of these are trained on commodity iPhone data and the other is trained on robot-sourced imagery and poses. This neural-geometry is compared to state-of-the-art lidar-inertial SLAM in terms of scene noise and metric-accuracy.

In Colombia, astronomical research is experiencing accelerated growth. To better understand its evolution and current state, we conducted a bibliometric study using data from the Astrophysics Data System (ADS) and the Web of Science (WoS). In the ADS, we identified 422 peer-reviewed publications from 1980, the year of the first publication, until 2023, the cut-off year of the study. Of the 25 Colombian institutions participating in at least one publication, 14 are private and 11 are state institutions. More than half of these institutions are concentrated in two main cities: Bogot\'a with 11 institutions, followed by Medell\'in with 3 institutions. The number of contributions from four universities stands out: Universidad de los Andes, Universidad Nacional de Colombia, Universidad Industrial de Santander, and Universidad de Antioquia with 104, 78, 68, and 67 publications, respectively. By cross-referencing the information from the ADS and the WoS, we found that the areas in which publications with the highest impact are found are three: high energies and fundamental physics, stars and stellar physics, and galaxies and cosmology. At the global level, according to the WoS, Colombia ranks 52nd in the number of peer-reviewed publications between 2019 and 2023 and fifth in Latin America. Additionally, we identified three highly cited publications (top 1% worldwide) belonging to the field of observational cosmology.

Machine Learning research, as most of Statistics, heavily relies on the concept of a data-generating probability distribution. As data points are thought to be sampled from such a distribution, we can learn from observed data about this distribution and, thus, predict future data points drawn from it (with some probability of success). Drawing on scholarship across disciplines, we here argue that this framework is not always a good model. Not only do such true probability distributions not exist; the framework can also be misleading and obscure both the choices made and the goals pursued in machine learning practice. We suggest an alternative framework that focuses on finite populations rather than abstract distributions; while classical learning theory can be left almost unchanged, it opens new opportunities, especially to model sampling. We compile these considerations into five reasons for modelling machine learning -- in some settings -- with finite distributions rather than generative distributions, both to be more faithful to practice and to provide novel theoretical insights.

We study collaboration patterns of Wikidata, one of the world's largest collaborative knowledge graph communities. Wikidata lacks long-term engagement with a small group of priceless members, 0.8%, to be responsible for 80% of contributions. Therefore, it is essential to investigate their behavioural patterns and find ways to enhance their contributions and participation. Previous studies have highlighted the importance of discussions among contributors in understanding these patterns. To investigate this, we analyzed all the discussions on Wikidata and used a mixed methods approach, including statistical tests, network analysis, and text and graph embedding representations. Our research showed that the interactions between Wikidata editors form a small world network where the content of a post influences the continuity of conversations. We also found that the account age of Wikidata members and their conversations are significant factors in their long-term engagement with the project. Our findings can benefit the Wikidata community by helping them improve their practices to increase contributions and enhance long-term participation.

The LLM Agent, equipped with a code interpreter, is capable of automatically solving real-world coding tasks, such as data analysis and image editing. However, existing benchmarks primarily focus on either simplistic tasks, such as completing a few lines of code, or on extremely complex and specific tasks at the repository level, neither of which are representative of various daily coding tasks. To address this gap, we introduce \textbf{PyBench}, a benchmark encompassing five main categories of real-world tasks, covering more than 10 types of files. Given a high-level user query and related files, the LLM Agent needs to reason and execute Python code via a code interpreter for a few turns before making a formal response to fulfill the user's requirements. Successfully addressing tasks in PyBench demands a robust understanding of various Python packages, superior reasoning capabilities, and the ability to incorporate feedback from executed code. Our evaluations indicate that current open-source LLMs are struggling with these tasks. Hence, we conduct analysis and experiments on four kinds of datasets proving that comprehensive abilities are needed for PyBench. Our fine-tuned 8B size model: \textbf{PyLlama3} achieves an exciting performance on PyBench which surpasses many 33B and 70B size models. Our Benchmark, Training Dataset, and Model are available at: \href{//github.com/Mercury7353/PyBench}{//github.com/Mercury7353/PyBench}

Affective Forecasting, a research direction in psychology that predicts individuals future emotions, is often constrained by numerous external factors like social influence and temporal distance. To address this, we transform Affective Forecasting into a Deep Learning problem by designing an Emotion Forecasting paradigm based on two-party interactions. We propose a novel Emotion Forecasting (EF) task grounded in the theory that an individuals emotions are easily influenced by the emotions or other information conveyed during interactions with another person. To tackle this task, we have developed a specialized dataset, Human-interaction-based Emotion Forecasting (Hi-EF), which contains 3069 two-party Multilayered-Contextual Interaction Samples (MCIS) with abundant affective-relevant labels and three modalities. Hi-EF not only demonstrates the feasibility of the EF task but also highlights its potential. Additionally, we propose a methodology that establishes a foundational and referential baseline model for the EF task and extensive experiments are provided. The dataset and code is available at //github.com/Anonymize-Author/Hi-EF.

Questions of `how best to acquire data' are essential to modeling and prediction in the natural and social sciences, engineering applications, and beyond. Optimal experimental design (OED) formalizes these questions and creates computational methods to answer them. This article presents a systematic survey of modern OED, from its foundations in classical design theory to current research involving OED for complex models. We begin by reviewing criteria used to formulate an OED problem and thus to encode the goal of performing an experiment. We emphasize the flexibility of the Bayesian and decision-theoretic approach, which encompasses information-based criteria that are well-suited to nonlinear and non-Gaussian statistical models. We then discuss methods for estimating or bounding the values of these design criteria; this endeavor can be quite challenging due to strong nonlinearities, high parameter dimension, large per-sample costs, or settings where the model is implicit. A complementary set of computational issues involves optimization methods used to find a design; we discuss such methods in the discrete (combinatorial) setting of observation selection and in settings where an exact design can be continuously parameterized. Finally we present emerging methods for sequential OED that build non-myopic design policies, rather than explicit designs; these methods naturally adapt to the outcomes of past experiments in proposing new experiments, while seeking coordination among all experiments to be performed. Throughout, we highlight important open questions and challenges.

When applying reinforcement learning from human feedback (RLHF), the reward is learned from data and, therefore, always has some error. It is common to mitigate this by regularizing the policy with KL divergence from a base model, with the hope that balancing reward with regularization will achieve desirable outcomes despite this reward misspecification. We show that when the reward function has light-tailed error, optimal policies under less restrictive KL penalties achieve arbitrarily high utility. However, if error is heavy-tailed, some policies obtain arbitrarily high reward despite achieving no more utility than the base model--a phenomenon we call catastrophic Goodhart. We adapt a discrete optimization method to measure the tails of reward models, finding that they are consistent with light-tailed error. However, the pervasiveness of heavy-tailed distributions in many real-world applications indicates that future sources of RL reward could have heavy-tailed error, increasing the likelihood of reward hacking even with KL regularization.

北京阿比特科技有限公司