The performance of decision policies and prediction models often deteriorates when applied to environments different from the ones seen during training. To ensure reliable operation, we propose and analyze the stability of a system under distribution shift, which is defined as the smallest change in the underlying environment that causes the system's performance to deteriorate beyond a permissible threshold. In contrast to standard tail risk measures and distributionally robust losses that require the specification of a plausible magnitude of distribution shift, the stability measure is defined in terms of a more intuitive quantity: the level of acceptable performance degradation. We develop a minimax optimal estimator of stability and analyze its convergence rate, which exhibits a fundamental phase shift behavior. Our characterization of the minimax convergence rate shows that evaluating stability against large performance degradation incurs a statistical cost. Empirically, we demonstrate the practical utility of our stability framework by using it to compare system designs on problems where robustness to distribution shift is critical.
Diffusion models achieve state-of-the-art performance in various generation tasks. However, their theoretical foundations fall far behind. This paper studies score approximation, estimation, and distribution recovery of diffusion models, when data are supported on an unknown low-dimensional linear subspace. Our result provides sample complexity bounds for distribution estimation using diffusion models. We show that with a properly chosen neural network architecture, the score function can be both accurately approximated and efficiently estimated. Furthermore, the generated distribution based on the estimated score function captures the data geometric structures and converges to a close vicinity of the data distribution. The convergence rate depends on the subspace dimension, indicating that diffusion models can circumvent the curse of data ambient dimensionality.
Prevalent deep learning models suffer from significant over-confidence under distribution shifts. In this paper, we propose Density-Softmax, a single deterministic approach for uncertainty estimation via a combination of density function with the softmax layer. By using the latent representation's likelihood value, our approach produces more uncertain predictions when test samples are distant from the training samples. Theoretically, we prove that Density-Softmax is distance aware, which means its associated uncertainty metrics are monotonic functions of distance metrics. This has been shown to be a necessary condition for a neural network to produce high-quality uncertainty estimation. Empirically, our method enjoys similar computational efficiency as standard softmax on shifted CIFAR-10, CIFAR-100, and ImageNet dataset across modern deep learning architectures. Notably, Density-Softmax uses 4 times fewer parameters than Deep Ensembles and 6 times lower latency than Rank-1 Bayesian Neural Network, while obtaining competitive predictive performance and lower calibration errors under distribution shifts.
Unsupervised Domain Adaptive Object Detection (UDA-OD) uses unlabelled data to improve the reliability of robotic vision systems in open-world environments. Previous approaches to UDA-OD based on self-training have been effective in overcoming changes in the general appearance of images. However, shifts in a robot's deployment environment can also impact the likelihood that different objects will occur, termed class distribution shift. Motivated by this, we propose a framework for explicitly addressing class distribution shift to improve pseudo-label reliability in self-training. Our approach uses the domain invariance and contextual understanding of a pre-trained joint vision and language model to predict the class distribution of unlabelled data. By aligning the class distribution of pseudo-labels with this prediction, we provide weak supervision of pseudo-label accuracy. To further account for low quality pseudo-labels early in self-training, we propose an approach to dynamically adjust the number of pseudo-labels per image based on model confidence. Our method outperforms state-of-the-art approaches on several benchmarks, including a 4.7 mAP improvement when facing challenging class distribution shift.
We revisit the following problem: given a set of indices $S = \{1, \dots, n\}$ and weights $w_1, \dots, w_n \in \mathbb{R}_{> 0}$, provide samples from $S$ with distribution $p(i) = w_i / W$ where $W = \sum_j w_j$ gives the proper normalization. In the static setting, there is a simple data structure due to Walker called Alias Table that allows for samples to be drawn in constant time. A more challenging task is to maintain the distribution in a dynamic setting, where elements may be added or removed, or weights may change over time; here, existing solutions restrict the permissible weights, require rebuilding of the associated data structure after a number of updates, or are rather complex. In this paper, we describe, analyze, and engineer a simple data structure for maintaining a discrete probability distribution in the dynamic setting. Construction of the data structure for an arbitrary distribution takes time $O(n)$, sampling takes expected time $O(1)$, and updates of size $\Delta = O(W / n)$ can be processed in time $O(1)$. To evaluate the efficiency of the data structure we conduct an experimental study. The results suggest that the dynamic sampling performance is comparable to the static Alias Table with a minor slowdown.
Estimation of heterogeneous causal effects - i.e., how effects of policies and treatments vary across subjects - is a fundamental task in causal inference, playing a crucial role in optimal treatment allocation, generalizability, subgroup effects, and more. Many flexible methods for estimating conditional average treatment effects (CATEs) have been proposed in recent years, but questions surrounding optimality have remained largely unanswered. In particular, a minimax theory of optimality has yet to be developed, with the minimax rate of convergence and construction of rate-optimal estimators remaining open problems. In this paper we derive the minimax rate for CATE estimation, in a nonparametric model where distributional components are Holder-smooth, and present a new local polynomial estimator, giving high-level conditions under which it is minimax optimal. More specifically, our minimax lower bound is derived via a localized version of the method of fuzzy hypotheses, combining lower bound constructions for nonparametric regression and functional estimation. Our proposed estimator can be viewed as a local polynomial R-Learner, based on a localized modification of higher-order influence function methods; it is shown to be minimax optimal under a condition on how accurately the covariate distribution is estimated. The minimax rate we find exhibits several interesting features, including a non-standard elbow phenomenon and an unusual interpolation between nonparametric regression and functional estimation rates. The latter quantifies how the CATE, as an estimand, can be viewed as a regression/functional hybrid. We conclude with some discussion of a few remaining open problems.
Diagnosing and mitigating changes in model fairness under distribution shift is an important component of the safe deployment of machine learning in healthcare settings. Importantly, the success of any mitigation strategy strongly depends on the structure of the shift. Despite this, there has been little discussion of how to empirically assess the structure of a distribution shift that one is encountering in practice. In this work, we adopt a causal framing to motivate conditional independence tests as a key tool for characterizing distribution shifts. Using our approach in two medical applications, we show that this knowledge can help diagnose failures of fairness transfer, including cases where real-world shifts are more complex than is often assumed in the literature. Based on these results, we discuss potential remedies at each step of the machine learning pipeline.
Out-of-sample prediction is the acid test of predictive models, yet an independent test dataset is often not available for assessment of the prediction error. For this reason, out-of-sample performance is commonly estimated using data splitting algorithms such as cross-validation or the bootstrap. For quantitative outcomes, the ratio of variance explained to total variance can be summarized by the coefficient of determination or in-sample $R^2$, which is easy to interpret and to compare across different outcome variables. As opposed to the in-sample $R^2$, the out-of-sample $R^2$ has not been well defined and the variability on the out-of-sample $\hat{R}^2$ has been largely ignored. Usually only its point estimate is reported, hampering formal comparison of predictability of different outcome variables. Here we explicitly define the out-of-sample $R^2$ as a comparison of two predictive models, provide an unbiased estimator and exploit recent theoretical advances on uncertainty of data splitting estimates to provide a standard error for the $\hat{R}^2$. The performance of the estimators for the $R^2$ and its standard error are investigated in a simulation study. We demonstrate our new method by constructing confidence intervals and comparing models for prediction of quantitative $\text{Brassica napus}$ and $\text{Zea mays}$ phenotypes based on gene expression data.
When deploying modern machine learning-enabled robotic systems in high-stakes applications, detecting distribution shift is critical. However, most existing methods for detecting distribution shift are not well-suited to robotics settings, where data often arrives in a streaming fashion and may be very high-dimensional. In this work, we present an online method for detecting distribution shift with guarantees on the false positive rate - i.e., when there is no distribution shift, our system is very unlikely (with probability $< \epsilon$) to falsely issue an alert; any alerts that are issued should therefore be heeded. Our method is specifically designed for efficient detection even with high dimensional data, and it empirically achieves up to 11x faster detection on realistic robotics settings compared to prior work while maintaining a low false negative rate in practice (whenever there is a distribution shift in our experiments, our method indeed emits an alert).
Out-of-distribution (OOD) data poses serious challenges in deployed machine learning models as even subtle changes could incur significant performance drops. Being able to estimate a model's performance on test data is important in practice as it indicates when to trust to model's decisions. We present a simple yet effective method to predict a model's performance on an unknown distribution without any addition annotation. Our approach is rooted in the Optimal Transport theory, viewing test samples' output softmax scores from deep neural networks as empirical samples from an unknown distribution. We show that our method, Confidence Optimal Transport (COT), provides robust estimates of a model's performance on a target domain. Despite its simplicity, our method achieves state-of-the-art results on three benchmark datasets and outperforms existing methods by a large margin.
The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.