Since humans can listen to audio and watch videos at faster speeds than actually observed, we often listen to or watch these pieces of content at higher playback speeds to increase the time efficiency of content comprehension. To further utilize this capability, systems that automatically adjust the playback speed according to the user's condition and the type of content to assist in more efficient comprehension of time-series content have been developed. However, there is still room for these systems to further extend human speed-listening ability by generating speech with playback speed optimized for even finer time units and providing it to humans. In this study, we determine whether humans can hear the optimized speech and propose a system that automatically adjusts playback speed at units as small as phonemes while ensuring speech intelligibility. The system uses the speech recognizer score as a proxy for how well a human can hear a certain unit of speech and maximizes the speech playback speed to the extent that a human can hear. This method can be used to produce fast but intelligible speech. In the evaluation experiment, we compared the speech played back at a constant fast speed and the flexibly speed-up speech generated by the proposed method in a blind test and confirmed that the proposed method produced speech that was easier to listen to.
Soft-robot designs are manifold, but only a few are publicly available. Often, these are only briefly described in their publications. This complicates reproduction, and hinders the reproducibility and comparability of research results. If the designs were uniform and open source, validating researched methods on real benchmark systems would be possible. To address this, we present two variants of a soft pneumatic robot with antagonistic bellows as open source. Starting from a semi-modular design with multiple cables and tubes routed through the robot body, the transition to a fully modular robot with integrated microvalves and serial communication is highlighted. Modularity in terms of stackability, actuation, and communication is achieved, which is the crucial requirement for building soft robots with many degrees of freedom and high dexterity for real-world tasks. Both systems are compared regarding their respective advantages and disadvantages. The robots' functionality is demonstrated in experiments on airtightness, gravitational influence, position control with mean tracking errors of <3 deg, and long-term operation of cast and printed bellows. All soft- and hardware files required for reproduction are provided.
Trajectory similarity search plays an essential role in autonomous driving, as it enables vehicles to analyze the information and characteristics of different trajectories to make informed decisions and navigate safely in dynamic environments. Existing work on the trajectory similarity search task primarily utilizes sequence-processing algorithms or Recurrent Neural Networks (RNNs), which suffer from the inevitable issues of complicated architecture and heavy training costs. Considering the intricate connections between trajectories, using Graph Neural Networks (GNNs) for data modeling is feasible. However, most methods directly use existing mathematical graph structures as the input instead of constructing specific graphs from certain vehicle trajectory data. This ignores such data's unique and dynamic characteristics. To bridge such a research gap, we propose VeTraSS -- an end-to-end pipeline for Vehicle Trajectory Similarity Search. Specifically, VeTraSS models the original trajectory data into multi-scale graphs, and generates comprehensive embeddings through a novel multi-layer attention-based GNN. The learned embeddings can be used for searching similar vehicle trajectories. Extensive experiments on the Porto and Geolife datasets demonstrate the effectiveness of VeTraSS, where our model outperforms existing work and reaches the state-of-the-art. This demonstrates the potential of VeTraSS for trajectory analysis and safe navigation in self-driving vehicles in the real world.
The widespread adoption of voice-activated systems has modified routine human-machine interaction but has also introduced new vulnerabilities. This paper investigates the susceptibility of automatic speech recognition (ASR) algorithms in these systems to interference from near-ultrasonic noise. Building upon prior research that demonstrated the ability of near-ultrasonic frequencies (16 kHz - 22 kHz) to exploit the inherent properties of microelectromechanical systems (MEMS) microphones, our study explores alternative privacy enforcement means using this interference phenomenon. We expose a critical vulnerability in the most common microphones used in modern voice-activated devices, which inadvertently demodulate near-ultrasonic frequencies into the audible spectrum, disrupting the ASR process. Through a systematic analysis of the impact of near-ultrasonic noise on various ASR systems, we demonstrate that this vulnerability is consistent across different devices and under varying conditions, such as broadcast distance and specific phoneme structures. Our findings highlight the need to develop robust countermeasures to protect voice-activated systems from malicious exploitation of this vulnerability. Furthermore, we explore the potential applications of this phenomenon in enhancing privacy by disrupting unauthorized audio recording or eavesdropping. This research underscores the importance of a comprehensive approach to securing voice-activated systems, combining technological innovation, responsible development practices, and informed policy decisions to ensure the privacy and security of users in an increasingly connected world.
Object State Changes (OSCs) are pivotal for video understanding. While humans can effortlessly generalize OSC understanding from familiar to unknown objects, current approaches are confined to a closed vocabulary. Addressing this gap, we introduce a novel open-world formulation for the video OSC problem. The goal is to temporally localize the three stages of an OSC -- the object's initial state, its transitioning state, and its end state -- whether or not the object has been observed during training. Towards this end, we develop VidOSC, a holistic learning approach that: (1) leverages text and vision-language models for supervisory signals to obviate manually labeling OSC training data, and (2) abstracts fine-grained shared state representations from objects to enhance generalization. Furthermore, we present HowToChange, the first open-world benchmark for video OSC localization, which offers an order of magnitude increase in the label space and annotation volume compared to the best existing benchmark. Experimental results demonstrate the efficacy of our approach, in both traditional closed-world and open-world scenarios.
Large AI models trained on audio data may have the potential to rapidly classify patients, enhancing medical decision-making and potentially improving outcomes through early detection. Existing technologies depend on limited datasets using expensive recording equipment in high-income, English-speaking countries. This challenges deployment in resource-constrained, high-volume settings where audio data may have a profound impact. This report introduces a novel data type and a corresponding collection system that captures health data through guided questions using only a mobile/web application. This application ultimately results in an audio electronic health record (voice EHR) which may contain complex biomarkers of health from conventional voice/respiratory features, speech patterns, and language with semantic meaning - compensating for the typical limitations of unimodal clinical datasets. This report introduces a consortium of partners for global work, presents the application used for data collection, and showcases the potential of informative voice EHR to advance the scalability and diversity of audio AI.
Omnidirectional cameras are extensively used in various applications to provide a wide field of vision. However, they face a challenge in synthesizing novel views due to the inevitable presence of dynamic objects, including the photographer, in their wide field of view. In this paper, we introduce a new approach called Omnidirectional Local Radiance Fields (OmniLocalRF) that can render static-only scene views, removing and inpainting dynamic objects simultaneously. Our approach combines the principles of local radiance fields with the bidirectional optimization of omnidirectional rays. Our input is an omnidirectional video, and we evaluate the mutual observations of the entire angle between the previous and current frames. To reduce ghosting artifacts of dynamic objects and inpaint occlusions, we devise a multi-resolution motion mask prediction module. Unlike existing methods that primarily separate dynamic components through the temporal domain, our method uses multi-resolution neural feature planes for precise segmentation, which is more suitable for long 360-degree videos. Our experiments validate that OmniLocalRF outperforms existing methods in both qualitative and quantitative metrics, especially in scenarios with complex real-world scenes. In particular, our approach eliminates the need for manual interaction, such as drawing motion masks by hand and additional pose estimation, making it a highly effective and efficient solution.
Gaussian splatting has emerged as a powerful 3D representation that harnesses the advantages of both explicit (mesh) and implicit (NeRF) 3D representations. In this paper, we seek to leverage Gaussian splatting to generate realistic animatable avatars from textual descriptions, addressing the limitations (e.g., flexibility and efficiency) imposed by mesh or NeRF-based representations. However, a naive application of Gaussian splatting cannot generate high-quality animatable avatars and suffers from learning instability; it also cannot capture fine avatar geometries and often leads to degenerate body parts. To tackle these problems, we first propose a primitive-based 3D Gaussian representation where Gaussians are defined inside pose-driven primitives to facilitate animation. Second, to stabilize and amortize the learning of millions of Gaussians, we propose to use neural implicit fields to predict the Gaussian attributes (e.g., colors). Finally, to capture fine avatar geometries and extract detailed meshes, we propose a novel SDF-based implicit mesh learning approach for 3D Gaussians that regularizes the underlying geometries and extracts highly detailed textured meshes. Our proposed method, GAvatar, enables the large-scale generation of diverse animatable avatars using only text prompts. GAvatar significantly surpasses existing methods in terms of both appearance and geometry quality, and achieves extremely fast rendering (100 fps) at 1K resolution.
Connecting text and visual modalities plays an essential role in generative intelligence. For this reason, inspired by the success of large language models, significant research efforts are being devoted to the development of Multimodal Large Language Models (MLLMs). These models can seamlessly integrate visual and textual modalities, both as input and output, while providing a dialogue-based interface and instruction-following capabilities. In this paper, we provide a comprehensive review of recent visual-based MLLMs, analyzing their architectural choices, multimodal alignment strategies, and training techniques. We also conduct a detailed analysis of these models across a wide range of tasks, including visual grounding, image generation and editing, visual understanding, and domain-specific applications. Additionally, we compile and describe training datasets and evaluation benchmarks, conducting comparisons among existing models in terms of performance and computational requirements. Overall, this survey offers a comprehensive overview of the current state of the art, laying the groundwork for future MLLMs.
Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.
Automatic image captioning has recently approached human-level performance due to the latest advances in computer vision and natural language understanding. However, most of the current models can only generate plain factual descriptions about the content of a given image. However, for human beings, image caption writing is quite flexible and diverse, where additional language dimensions, such as emotion, humor and language styles, are often incorporated to produce diverse, emotional, or appealing captions. In particular, we are interested in generating sentiment-conveying image descriptions, which has received little attention. The main challenge is how to effectively inject sentiments into the generated captions without altering the semantic matching between the visual content and the generated descriptions. In this work, we propose two different models, which employ different schemes for injecting sentiments into image captions. Compared with the few existing approaches, the proposed models are much simpler and yet more effective. The experimental results show that our model outperform the state-of-the-art models in generating sentimental (i.e., sentiment-bearing) image captions. In addition, we can also easily manipulate the model by assigning different sentiments to the testing image to generate captions with the corresponding sentiments.