亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A path query extracts vertex tuples from a labeled graph, based on the words that are formed by the paths connecting the vertices. We study the computational complexity of measuring the contribution of edges and vertices to an answer to a path query, focusing on the class of conjunctive regular path queries. To measure this contribution, we adopt the traditional Shapley value from cooperative game theory. This value has been recently proposed and studied in the context of relational database queries and has uses in a plethora of other domains. We first study the contribution of edges and show that the exact Shapley value is almost always hard to compute. Specifically, it is #P-hard to calculate the contribution of an edge whenever at least one (non-redundant) conjunct allows for a word of length three or more. In the case of regular path queries (i.e., no conjunction), the problem is tractable if the query has only words of length at most two; hence, this property fully characterizes the tractability of the problem. On the other hand, if we allow for an approximation error, then it is straightforward to obtain an efficient scheme (FPRAS) for an additive approximation. Yet, a multiplicative approximation is harder to obtain. We establish that in the case of conjunctive regular path queries, a multiplicative approximation of the Shapley value of an edge can be computed in polynomial time if and only if all query atoms are finite languages (assuming non-redundancy and conventional complexity limitations). We also study the analogous situation where we wish to determine the contribution of a vertex, rather than an edge, and establish complexity results of similar nature.

相關內容

This paper is concerned with offline reinforcement learning (RL), which learns using pre-collected data without further exploration. Effective offline RL would be able to accommodate distribution shift and limited data coverage. However, prior algorithms or analyses either suffer from suboptimal sample complexities or incur high burn-in cost to reach sample optimality, thus posing an impediment to efficient offline RL in sample-starved applications. We demonstrate that the model-based (or "plug-in") approach achieves minimax-optimal sample complexity without burn-in cost for tabular Markov decision processes (MDPs). Concretely, consider a finite-horizon (resp. $\gamma$-discounted infinite-horizon) MDP with $S$ states and horizon $H$ (resp. effective horizon $\frac{1}{1-\gamma}$), and suppose the distribution shift of data is reflected by some single-policy clipped concentrability coefficient $C^{\star}_{\text{clipped}}$. We prove that model-based offline RL yields $\varepsilon$-accuracy with a sample complexity of \[ \begin{cases} \frac{H^{4}SC_{\text{clipped}}^{\star}}{\varepsilon^{2}} & (\text{finite-horizon MDPs}) \frac{SC_{\text{clipped}}^{\star}}{(1-\gamma)^{3}\varepsilon^{2}} & (\text{infinite-horizon MDPs}) \end{cases} \] up to log factor, which is minimax optimal for the entire $\varepsilon$-range. The proposed algorithms are ``pessimistic'' variants of value iteration with Bernstein-style penalties, and do not require sophisticated variance reduction. Our analysis framework is established upon delicate leave-one-out decoupling arguments in conjunction with careful self-bounding techniques tailored to MDPs.

A method for detecting and approximating fault lines or surfaces, respectively, or decision curves in two and three dimensions with guaranteed accuracy is presented. Reformulated as a classification problem, our method starts from a set of scattered points along with the corresponding classification algorithm to construct a representation of a decision curve by points with prescribed maximal distance to the true decision curve. Hereby, our algorithm ensures that the representing point set covers the decision curve in its entire extent and features local refinement based on the geometric properties of the decision curve. We demonstrate applications of our method to problems related to the detection of faults, to Multi-Criteria Decision Aid and, in combination with Kirsch's factorization method, to solving an inverse acoustic scattering problem. In all applications we considered in this work, our method requires significantly less pointwise classifications than previously employed algorithms.

In this work, we study the computational complexity of quantum determinants, a $q$-deformation of matrix permanents: Given a complex number $q$ on the unit circle in the complex plane and an $n\times n$ matrix $X$, the $q$-permanent of $X$ is defined as $$\mathrm{Per}_q(X) = \sum_{\sigma\in S_n} q^{\ell(\sigma)}X_{1,\sigma(1)}\ldots X_{n,\sigma(n)},$$ where $\ell(\sigma)$ is the inversion number of permutation $\sigma$ in the symmetric group $S_n$ on $n$ elements. The function family generalizes determinant and permanent, which correspond to the cases $q=-1$ and $q=1$ respectively. For worst-case hardness, by Liouville's approximation theorem and facts from algebraic number theory, we show that for primitive $m$-th root of unity $q$ for odd prime power $m=p^k$, exactly computing $q$-permanent is $\mathsf{Mod}_p\mathsf{P}$-hard. This implies that an efficient algorithm for computing $q$-permanent results in a collapse of the polynomial hierarchy. Next, we show that computing $q$-permanent can be achieved using an oracle that approximates to within a polynomial multiplicative error and a membership oracle for a finite set of algebraic integers. From this, an efficient approximation algorithm would also imply a collapse of the polynomial hierarchy. By random self-reducibility, computing $q$-permanent remains to be hard for a wide range of distributions satisfying a property called the strong autocorrelation property. Specifically, this is proved via a reduction from $1$-permanent to $q$-permanent for $O(1/n^2)$ points $z$ on the unit circle. Since the family of permanent functions shares common algebraic structure, various techniques developed for the hardness of permanent can be generalized to $q$-permanents.

We present and analyze a parallel implementation of a parallel-in-time collocation method based on $\alpha$-circulant preconditioned Richardson iterations. While many papers explore this family of single-level, time-parallel "all-at-once" integrators from various perspectives, performance results of actual parallel runs are still scarce. This leaves a critical gap, because the efficiency and applicability of any parallel method heavily rely on the actual parallel performance, with only limited guidance from theoretical considerations. Further, challenges like selecting good parameters, finding suitable communication strategies, and performing a fair comparison to sequential time-stepping methods can be easily missed. In this paper, we first extend the original idea of these fixed point iterative approaches based on $\alpha$-circulant preconditioners to high-order collocation methods, adding yet another level of parallelization in time "across the method". We derive an adaptive strategy to select a new $\alpha$-circulant preconditioner for each iteration during runtime for balancing convergence rates, round-off errors, and inexactness of inner system solves for the individual time-steps. After addressing these more theoretical challenges, we present an open-source space- and time-parallel implementation and evaluate its performance for two different test problems.

We develop a linear time algorithm for finding the diameter of an asteroidal triple-free (AT-free) graph. Furthermore, we update the definition of polar pairs and develop new properties of polar pairs for (weak) dominating pair graphs. We prove that the problem of computing a simplicial vertex in a general graph can be accomplished in O(n^2) based on an existing reduction to the problem of finding diameter in an AT-free graph. We improve the best-known run-time complexities of several graph theoretical problems.

Recent research increasingly brings to question the appropriateness of using predictive tools in complex, real-world tasks. While a growing body of work has explored ways to improve value alignment in these tools, comparatively less work has centered concerns around the fundamental justifiability of using these tools. This work seeks to center validity considerations in deliberations around whether and how to build data-driven algorithms in high-stakes domains. Toward this end, we translate key concepts from validity theory to predictive algorithms. We apply the lens of validity to re-examine common challenges in problem formulation and data issues that jeopardize the justifiability of using predictive algorithms and connect these challenges to the social science discourse around validity. Our interdisciplinary exposition clarifies how these concepts apply to algorithmic decision making contexts. We demonstrate how these validity considerations could distill into a series of high-level questions intended to promote and document reflections on the legitimacy of the predictive task and the suitability of the data.

We make progress toward a characterization of the graphs $H$ such that every connected $H$-free graph has a longest path transversal of size $1$. In particular, we show that the graphs $H$ on at most $4$ vertices satisfying this property are exactly the linear forests. We also show that if the order of a connected graph $G$ is large relative to its connectivity $\kappa(G)$, and its independence number $\alpha(G)$ satisfies $\alpha(G) \le \kappa(G) + 2$, then each vertex of maximum degree forms a longest path transversal of size $1$.

We study the enumeration of answers to Unions of Conjunctive Queries (UCQs) with optimal time guarantees. More precisely, we wish to identify the queries that can be solved with linear preprocessing time and constant delay. Despite the basic nature of this problem, it was shown only recently that UCQs can be solved within these time bounds if they admit free-connex union extensions, even if all individual CQs in the union are intractable with respect to the same complexity measure. Our goal is to understand whether there exist additional tractable UCQs, not covered by the currently known algorithms. As a first step, we show that some previously unclassified UCQs are hard using the classic 3SUM hypothesis, via a known reduction from 3SUM to triangle listing in graphs. As a second step, we identify a question about a variant of this graph task which is unavoidable if we want to classify all self-join free UCQs: is it possible to decide the existence of a triangle in a vertex-unbalanced tripartite graph in linear time? We prove that this task is equivalent in hardness to some family of UCQs. Finally, we show a dichotomy for unions of two self-join-free CQs if we assume the answer to this question is negative. Our conclusion is that, to reason about a class of enumeration problems defined by UCQs, it is enough to study the single decision problem of detecting triangles in unbalanced graphs. Without a breakthrough for triangle detection, we have no hope to find an efficient algorithm for additional unions of two self-join free CQs. On the other hand, if we will one day have such a triangle detection algorithm, we will immediately obtain an efficient algorithm for a family of UCQs that are currently not known to be tractable.

Co-evolving time series appears in a multitude of applications such as environmental monitoring, financial analysis, and smart transportation. This paper aims to address the following challenges, including (C1) how to incorporate explicit relationship networks of the time series; (C2) how to model the implicit relationship of the temporal dynamics. We propose a novel model called Network of Tensor Time Series, which is comprised of two modules, including Tensor Graph Convolutional Network (TGCN) and Tensor Recurrent Neural Network (TRNN). TGCN tackles the first challenge by generalizing Graph Convolutional Network (GCN) for flat graphs to tensor graphs, which captures the synergy between multiple graphs associated with the tensors. TRNN leverages tensor decomposition to model the implicit relationships among co-evolving time series. The experimental results on five real-world datasets demonstrate the efficacy of the proposed method.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

北京阿比特科技有限公司