亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents a deep learning framework for medical video segmentation. Convolution neural network (CNN) and transformer-based methods have achieved great milestones in medical image segmentation tasks due to their incredible semantic feature encoding and global information comprehension abilities. However, most existing approaches ignore a salient aspect of medical video data - the temporal dimension. Our proposed framework explicitly extracts features from neighbouring frames across the temporal dimension and incorporates them with a temporal feature blender, which then tokenises the high-level spatio-temporal feature to form a strong global feature encoded via a Swin Transformer. The final segmentation results are produced via a UNet-like encoder-decoder architecture. Our model outperforms other approaches by a significant margin and improves the segmentation benchmarks on the VFSS2022 dataset, achieving a dice coefficient of 0.8986 and 0.8186 for the two datasets tested. Our studies also show the efficacy of the temporal feature blending scheme and cross-dataset transferability of learned capabilities. Code and models are fully available at //github.com/SimonZeng7108/Video-SwinUNet.

相關內容

Hash representation learning of multi-view heterogeneous data is the key to improving the accuracy of multimedia retrieval. However, existing methods utilize local similarity and fall short of deeply fusing the multi-view features, resulting in poor retrieval accuracy. Current methods only use local similarity to train their model. These methods ignore global similarity. Furthermore, most recent works fuse the multi-view features via a weighted sum or concatenation. We contend that these fusion methods are insufficient for capturing the interaction between various views. We present a novel Central Similarity Multi-View Hashing (CSMVH) method to address the mentioned problems. Central similarity learning is used for solving the local similarity problem, which can utilize the global similarity between the hash center and samples. We present copious empirical data demonstrating the superiority of gate-based fusion over conventional approaches. On the MS COCO and NUS-WIDE, the proposed CSMVH performs better than the state-of-the-art methods by a large margin (up to 11.41% mean Average Precision (mAP) improvement).

Efficient networks, e.g., MobileNetV2, EfficientNet, etc, achieves state-of-the-art (SOTA) accuracy with lightweight computation. However, existing homomorphic encryption (HE)-based two-party computation (2PC) frameworks are not optimized for these networks and suffer from a high inference overhead. We observe the inefficiency mainly comes from the packing algorithm, which ignores the computation characteristics and the communication bottleneck of homomorphically encrypted depthwise convolutions. Therefore, in this paper, we propose Falcon, an effective dense packing algorithm for HE-based 2PC frameworks. Falcon features a zero-aware greedy packing algorithm and a communication-aware operator tiling strategy to improve the packing density for depthwise convolutions. Compared to SOTA HE-based 2PC frameworks, e.g., CrypTFlow2, Iron and Cheetah, Falcon achieves more than 15.6x, 5.1x and 1.8x latency reduction, respectively, at operator level. Meanwhile, at network level, Falcon allows for 1.4% and 4.2% accuracy improvement over Cheetah on CIFAR-100 and TinyImagenet datasets with iso-communication, respecitvely.

Recent video recognition models utilize Transformer models for long-range spatio-temporal context modeling. Video transformer designs are based on self-attention that can model global context at a high computational cost. In comparison, convolutional designs for videos offer an efficient alternative but lack long-range dependency modeling. Towards achieving the best of both designs, this work proposes Video-FocalNet, an effective and efficient architecture for video recognition that models both local and global contexts. Video-FocalNet is based on a spatio-temporal focal modulation architecture that reverses the interaction and aggregation steps of self-attention for better efficiency. Further, the aggregation step and the interaction step are both implemented using efficient convolution and element-wise multiplication operations that are computationally less expensive than their self-attention counterparts on video representations. We extensively explore the design space of focal modulation-based spatio-temporal context modeling and demonstrate our parallel spatial and temporal encoding design to be the optimal choice. Video-FocalNets perform favorably well against the state-of-the-art transformer-based models for video recognition on five large-scale datasets (Kinetics-400, Kinetics-600, SS-v2, Diving-48, and ActivityNet-1.3) at a lower computational cost. Our code/models are released at //github.com/TalalWasim/Video-FocalNets.

CNNs have been widely applied for medical image analysis. However, limited memory capacity is one of the most common drawbacks of processing high-resolution 3D volumetric data. 3D volumes are usually cropped or downsized first before processing, which can result in a loss of resolution, increase class imbalance, and affect the performance of the segmentation algorithms. In this paper, we propose an end-to-end deep learning approach called IP-UNet. IP-UNet is a UNet-based model that performs multi-class segmentation on Intensity Projection (IP) of 3D volumetric data instead of the memory-consuming 3D volumes. IP-UNet uses limited memory capability for training without losing the original 3D image resolution. We compare the performance of three models in terms of segmentation accuracy and computational cost: 1) Slice-by-slice 2D segmentation of the CT scan images using a conventional 2D UNet model. 2) IP-UNet that operates on data obtained by merging the extracted Maximum Intensity Projection (MIP), Closest Vessel Projection (CVP), and Average Intensity Projection (AvgIP) representations of the source 3D volumes, then applying the UNet model on the output IP images. 3) 3D-UNet model directly reads the 3D volumes constructed from a series of CT scan images and outputs the 3D volume of the predicted segmentation. We test the performance of these methods on 3D volumetric images for automatic breast calcification detection. Experimental results show that IP-Unet can achieve similar segmentation accuracy with 3D-Unet but with much better performance. It reduces the training time by 70\% and memory consumption by 92\%.

Multiple instance learning (MIL) is a powerful tool to solve the weakly supervised classification in whole slide image (WSI) based pathology diagnosis. However, the current MIL methods are usually based on independent and identical distribution hypothesis, thus neglect the correlation among different instances. To address this problem, we proposed a new framework, called correlated MIL, and provided a proof for convergence. Based on this framework, we devised a Transformer based MIL (TransMIL), which explored both morphological and spatial information. The proposed TransMIL can effectively deal with unbalanced/balanced and binary/multiple classification with great visualization and interpretability. We conducted various experiments for three different computational pathology problems and achieved better performance and faster convergence compared with state-of-the-art methods. The test AUC for the binary tumor classification can be up to 93.09% over CAMELYON16 dataset. And the AUC over the cancer subtypes classification can be up to 96.03% and 98.82% over TCGA-NSCLC dataset and TCGA-RCC dataset, respectively.

We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at //github.com/facebookresearch/SlowFast

Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.

This paper presents a new multi-objective deep reinforcement learning (MODRL) framework based on deep Q-networks. We propose the use of linear and non-linear methods to develop the MODRL framework that includes both single-policy and multi-policy strategies. The experimental results on two benchmark problems including the two-objective deep sea treasure environment and the three-objective mountain car problem indicate that the proposed framework is able to converge to the optimal Pareto solutions effectively. The proposed framework is generic, which allows implementation of different deep reinforcement learning algorithms in different complex environments. This therefore overcomes many difficulties involved with standard multi-objective reinforcement learning (MORL) methods existing in the current literature. The framework creates a platform as a testbed environment to develop methods for solving various problems associated with the current MORL. Details of the framework implementation can be referred to //www.deakin.edu.au/~thanhthi/drl.htm.

The potential of graph convolutional neural networks for the task of zero-shot learning has been demonstrated recently. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, knowledge from distant nodes can get diluted when propagating through intermediate nodes, because current approaches to zero-shot learning use graph propagation schemes that perform Laplacian smoothing at each layer. We show that extensive smoothing does not help the task of regressing classifier weights in zero-shot learning. In order to still incorporate information from distant nodes and utilize the graph structure, we propose an Attentive Dense Graph Propagation Module (ADGPM). ADGPM allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants and an attention scheme is further used to weigh their contribution depending on the distance to the node. Finally, we illustrate that finetuning of the feature representation after training the ADGPM leads to considerable improvements. Our method achieves competitive results, outperforming previous zero-shot learning approaches.

This paper describes a general framework for learning Higher-Order Network Embeddings (HONE) from graph data based on network motifs. The HONE framework is highly expressive and flexible with many interchangeable components. The experimental results demonstrate the effectiveness of learning higher-order network representations. In all cases, HONE outperforms recent embedding methods that are unable to capture higher-order structures with a mean relative gain in AUC of $19\%$ (and up to $75\%$ gain) across a wide variety of networks and embedding methods.

北京阿比特科技有限公司