Despite the success of diffusion models (DMs), we still lack a thorough understanding of their latent space. To understand the latent space $\mathbf{x}_t \in \mathcal{X}$, we analyze them from a geometrical perspective. Our approach involves deriving the local latent basis within $\mathcal{X}$ by leveraging the pullback metric associated with their encoding feature maps. Remarkably, our discovered local latent basis enables image editing capabilities by moving $\mathbf{x}_t$, the latent space of DMs, along the basis vector at specific timesteps. We further analyze how the geometric structure of DMs evolves over diffusion timesteps and differs across different text conditions. This confirms the known phenomenon of coarse-to-fine generation, as well as reveals novel insights such as the discrepancy between $\mathbf{x}_t$ across timesteps, the effect of dataset complexity, and the time-varying influence of text prompts. To the best of our knowledge, this paper is the first to present image editing through $\mathbf{x}$-space traversal, editing only once at specific timestep $t$ without any additional training, and providing thorough analyses of the latent structure of DMs. The code to reproduce our experiments can be found at //github.com/enkeejunior1/Diffusion-Pullback.
The attention module is the key component in Transformers. While the global attention mechanism offers high expressiveness, its excessive computational cost restricts its applicability in various scenarios. In this paper, we propose a novel attention paradigm, Agent Attention, to strike a favorable balance between computational efficiency and representation power. Specifically, the Agent Attention, denoted as a quadruple $(Q, A, K, V)$, introduces an additional set of agent tokens $A$ into the conventional attention module. The agent tokens first act as the agent for the query tokens $Q$ to aggregate information from $K$ and $V$, and then broadcast the information back to $Q$. Given the number of agent tokens can be designed to be much smaller than the number of query tokens, the agent attention is significantly more efficient than the widely adopted Softmax attention, while preserving global context modelling capability. Interestingly, we show that the proposed agent attention is equivalent to a generalized form of linear attention. Therefore, agent attention seamlessly integrates the powerful Softmax attention and the highly efficient linear attention. Extensive experiments demonstrate the effectiveness of agent attention with various vision Transformers and across diverse vision tasks, including image classification, object detection, semantic segmentation and image generation. Notably, agent attention has shown remarkable performance in high-resolution scenarios, owning to its linear attention nature. For instance, when applied to Stable Diffusion, our agent attention accelerates generation and substantially enhances image generation quality without any additional training. Code is available at //github.com/LeapLabTHU/Agent-Attention.
Current quantum computers can only solve optimization problems of a very limited size. For larger problems, decomposition methods are required in which the original problem is broken down into several smaller sub-problems. These are then solved on the quantum computer and their solutions are merged into a final solution for the original problem. Often, these decomposition methods do not take the specific problem structure into account. In this paper, we present a tailored method using a divide-and-conquer strategy to solve the number partitioning problem (NPP) with a large number of variables. The idea is to perform a specialized decomposition into smaller NPPs, which can be solved on a quantum computer, and then recombine the results into another small auxiliary NPP. Solving this auxiliary problem yields an approximate solution of the original larger problem. We experimentally verify that our method allows to solve NPPs with over a thousand variables using a D-Wave quantum annealer.
Graph Neural Networks (GNNs) have paved its way for being a cornerstone in graph related learning tasks. From a theoretical perspective, the expressive power of GNNs is primarily characterised according to their ability to distinguish non-isomorphic graphs. It is a well-known fact that most of the conventional GNNs are upper-bounded by Weisfeiler-Lehman graph isomorphism test (1-WL). In this work, we study the expressive power of graph neural networks through the lens of graph partitioning. This follows from our observation that permutation invariant graph partitioning enables a powerful way of exploring structural interactions among vertex sets and subgraphs, and can help uplifting the expressive power of GNNs efficiently. Based on this, we first establish a theoretical connection between graph partitioning and graph isomorphism. Then we introduce a novel GNN architecture, namely Graph Partitioning Neural Networks (GPNNs). We theoretically analyse how a graph partitioning scheme and different kinds of structural interactions relate to the k-WL hierarchy. Empirically, we demonstrate its superior performance over existing GNN models in a variety of graph benchmark tasks.
Bayesian Experimental Design (BED), which aims to find the optimal experimental conditions for Bayesian inference, is usually posed as to optimize the expected information gain (EIG). The gradient information is often needed for efficient EIG optimization, and as a result the ability to estimate the gradient of EIG is essential for BED problems. The primary goal of this work is to develop methods for estimating the gradient of EIG, which, combined with the stochastic gradient descent algorithms, result in efficient optimization of EIG. Specifically, we first introduce a posterior expected representation of the EIG gradient with respect to the design variables. Based on this, we propose two methods for estimating the EIG gradient, UEEG-MCMC that leverages posterior samples generated through Markov Chain Monte Carlo (MCMC) to estimate the EIG gradient, and BEEG-AP that focuses on achieving high simulation efficiency by repeatedly using parameter samples. Theoretical analysis and numerical studies illustrate that UEEG-MCMC is robust agains the actual EIG value, while BEEG-AP is more efficient when the EIG value to be optimized is small. Moreover, both methods show superior performance compared to several popular benchmarks in our numerical experiments.
A challenge that data analysts face is building a data analysis that is useful for a given consumer. Previously, we defined a set of principles for describing data analyses that can be used to create a data analysis and to characterize the variation between analyses. Here, we introduce a concept that we call the alignment of a data analysis between the data analyst and a consumer. We define a successfully aligned data analysis as the matching of principles between the analyst and the consumer for whom the analysis is developed. In this paper, we propose a statistical model for evaluating the alignment of a data analysis and describe some of its properties. We argue that this framework provides a language for characterizing alignment and can be used as a guide for practicing data scientists and students in data science courses for how to build better data analyses.
As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.
In the past decade, we have witnessed the rise of deep learning to dominate the field of artificial intelligence. Advances in artificial neural networks alongside corresponding advances in hardware accelerators with large memory capacity, together with the availability of large datasets enabled researchers and practitioners alike to train and deploy sophisticated neural network models that achieve state-of-the-art performance on tasks across several fields spanning computer vision, natural language processing, and reinforcement learning. However, as these neural networks become bigger, more complex, and more widely used, fundamental problems with current deep learning models become more apparent. State-of-the-art deep learning models are known to suffer from issues that range from poor robustness, inability to adapt to novel task settings, to requiring rigid and inflexible configuration assumptions. Ideas from collective intelligence, in particular concepts from complex systems such as self-organization, emergent behavior, swarm optimization, and cellular systems tend to produce solutions that are robust, adaptable, and have less rigid assumptions about the environment configuration. It is therefore natural to see these ideas incorporated into newer deep learning methods. In this review, we will provide a historical context of neural network research's involvement with complex systems, and highlight several active areas in modern deep learning research that incorporate the principles of collective intelligence to advance its current capabilities. To facilitate a bi-directional flow of ideas, we also discuss work that utilize modern deep learning models to help advance complex systems research. We hope this review can serve as a bridge between complex systems and deep learning communities to facilitate the cross pollination of ideas and foster new collaborations across disciplines.
AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.
Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.
To quickly obtain new labeled data, we can choose crowdsourcing as an alternative way at lower cost in a short time. But as an exchange, crowd annotations from non-experts may be of lower quality than those from experts. In this paper, we propose an approach to performing crowd annotation learning for Chinese Named Entity Recognition (NER) to make full use of the noisy sequence labels from multiple annotators. Inspired by adversarial learning, our approach uses a common Bi-LSTM and a private Bi-LSTM for representing annotator-generic and -specific information. The annotator-generic information is the common knowledge for entities easily mastered by the crowd. Finally, we build our Chinese NE tagger based on the LSTM-CRF model. In our experiments, we create two data sets for Chinese NER tasks from two domains. The experimental results show that our system achieves better scores than strong baseline systems.