Positive-unlabeled (PU) learning deals with binary classification problems when only positive (P) and unlabeled (U) data are available. Many recent PU methods are based on neural networks, but little has been done to develop boosting algorithms for PU learning, despite boosting algorithms' strong performance on many fully supervised classification problems. In this paper, we propose a novel boosting algorithm, AdaPU, for PU learning. Similarly to AdaBoost, AdaPU aims to optimize an empirical exponential loss, but the loss is based on the PU data, rather than on positive-negative (PN) data. As in AdaBoost, we learn a weighted combination of weak classifiers by learning one weak classifier and its weight at a time. However, AdaPU requires a very different algorithm for learning the weak classifiers and determining their weights. This is because AdaPU learns a weak classifier and its weight using a weighted positive-negative (PN) dataset with some negative data weights $-$ the dataset is derived from the original PU data, and the data weights are determined by the current weighted classifier combination, but some data weights are negative. Our experiments showed that AdaPU outperforms neural networks on several benchmark PU datasets, including a large-scale challenging cyber security dataset.
Recent work has addressed textual reasoning tasks by prompting large language models with explanations via the chain-of-thought paradigm. However, subtly different explanations can yield widely varying downstream task accuracy, so explanations that have not been "tuned" for a task, such as off-the-shelf explanations written by nonexperts, may lead to mediocre performance. This paper tackles the problem of how to optimize explanation-infused prompts in a black-box fashion. We first generate sets of candidate explanations for each example in the prompt using a leave-one-out scheme. We then use a two-stage framework where we first evaluate explanations for each in-context example in isolation according to proxy metrics. Finally, we search over sets of explanations to find a set which yields high performance against a silver-labeled development set, drawing inspiration from recent work on bootstrapping language models on unlabeled data. Across four textual reasoning tasks spanning question answering, mathematical reasoning, and natural language inference, results show that our proxy metrics correlate with ground truth accuracy and our overall method can effectively improve prompts over crowdworker annotations and naive search strategies.
Class incremental learning(CIL) has attracted much attention, but most existing related works focus on fine-tuning the entire representation model, which inevitably results in much catastrophic forgetting. In the contrast, with a semantic-rich pre-trained representation model, parameter-additional-tuning (PAT) only changes very few parameters to learn new visual concepts. Recent studies have proved that PAT-based CIL can naturally avoid fighting against forgetting by replaying or distilling like most of the existing methods. However, we find that PAT-based CIL still faces serious semantic drift, the high-level forgetting problem caused by classifier learning bias at different learning phases, which significantly reduces the performance of PAT-based CIL. To address this problem, we propose Incremental Prototype Tuning (IPT), a simple but effective method that tunes category prototypes for classification and learning example prototypes to compensate for semantic drift. Extensive experiments demonstrate that our method can effectively compensate for semantic drift. Combined with well-pre-trained Vit backbones and other PAT methods, IPT surpasses the state-of-the-art baselines on mainstream incremental learning benchmarks.
Many loss functions have been derived from cross-entropy loss functions such as large-margin softmax loss and focal loss. The large-margin softmax loss makes the classification more rigorous and prevents overfitting. The focal loss alleviates class imbalance in object detection by down-weighting the loss of well-classified examples. Recent research has shown that these two loss functions derived from cross entropy have valuable applications in the field of image segmentation. However, to the best of our knowledge, there is no unified formulation that combines these two loss functions so that they can not only be transformed mutually, but can also be used to simultaneously address class imbalance and overfitting. To this end, we subdivide the entropy-based loss into the regularizer-based entropy loss and the focal-based entropy loss, and propose a novel optimized hybrid focal loss to handle extreme class imbalance and prevent overfitting for crack segmentation. We have evaluated our proposal in comparison with three crack segmentation datasets (DeepCrack-DB, CRACK500 and our private PanelCrack dataset). Our experiments demonstrate that the focal margin component can significantly increase the IoU of cracks by 0.43 on DeepCrack-DB and 0.44 on our PanelCrack dataset, respectively.
Training end-to-end speech translation (ST) systems requires sufficiently large-scale data, which is unavailable for most language pairs and domains. One practical solution to the data scarcity issue is to convert machine translation data (MT) to ST data via text-to-speech (TTS) systems. Yet, using TTS systems can be tedious and slow, as the conversion needs to be done for each MT dataset. In this work, we propose a simple, scalable and effective data augmentation technique, i.e., SpokenVocab, to convert MT data to ST data on-the-fly. The idea is to retrieve and stitch audio snippets from a SpokenVocab bank according to words in an MT sequence. Our experiments on multiple language pairs from Must-C show that this method outperforms strong baselines by an average of 1.83 BLEU scores, and it performs equally well as TTS-generated speech. We also showcase how SpokenVocab can be applied in code-switching ST for which often no TTS systems exit. Our code is available at //github.com/mingzi151/SpokenVocab
The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.
Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.
The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.
Object detectors usually achieve promising results with the supervision of complete instance annotations. However, their performance is far from satisfactory with sparse instance annotations. Most existing methods for sparsely annotated object detection either re-weight the loss of hard negative samples or convert the unlabeled instances into ignored regions to reduce the interference of false negatives. We argue that these strategies are insufficient since they can at most alleviate the negative effect caused by missing annotations. In this paper, we propose a simple but effective mechanism, called Co-mining, for sparsely annotated object detection. In our Co-mining, two branches of a Siamese network predict the pseudo-label sets for each other. To enhance multi-view learning and better mine unlabeled instances, the original image and corresponding augmented image are used as the inputs of two branches of the Siamese network, respectively. Co-mining can serve as a general training mechanism applied to most of modern object detectors. Experiments are performed on MS COCO dataset with three different sparsely annotated settings using two typical frameworks: anchor-based detector RetinaNet and anchor-free detector FCOS. Experimental results show that our Co-mining with RetinaNet achieves 1.4%~2.1% improvements compared with different baselines and surpasses existing methods under the same sparsely annotated setting.
Deep neural networks have achieved remarkable success in computer vision tasks. Existing neural networks mainly operate in the spatial domain with fixed input sizes. For practical applications, images are usually large and have to be downsampled to the predetermined input size of neural networks. Even though the downsampling operations reduce computation and the required communication bandwidth, it removes both redundant and salient information obliviously, which results in accuracy degradation. Inspired by digital signal processing theories, we analyze the spectral bias from the frequency perspective and propose a learning-based frequency selection method to identify the trivial frequency components which can be removed without accuracy loss. The proposed method of learning in the frequency domain leverages identical structures of the well-known neural networks, such as ResNet-50, MobileNetV2, and Mask R-CNN, while accepting the frequency-domain information as the input. Experiment results show that learning in the frequency domain with static channel selection can achieve higher accuracy than the conventional spatial downsampling approach and meanwhile further reduce the input data size. Specifically for ImageNet classification with the same input size, the proposed method achieves 1.41% and 0.66% top-1 accuracy improvements on ResNet-50 and MobileNetV2, respectively. Even with half input size, the proposed method still improves the top-1 accuracy on ResNet-50 by 1%. In addition, we observe a 0.8% average precision improvement on Mask R-CNN for instance segmentation on the COCO dataset.
Learning similarity functions between image pairs with deep neural networks yields highly correlated activations of embeddings. In this work, we show how to improve the robustness of such embeddings by exploiting the independence within ensembles. To this end, we divide the last embedding layer of a deep network into an embedding ensemble and formulate training this ensemble as an online gradient boosting problem. Each learner receives a reweighted training sample from the previous learners. Further, we propose two loss functions which increase the diversity in our ensemble. These loss functions can be applied either for weight initialization or during training. Together, our contributions leverage large embedding sizes more effectively by significantly reducing correlation of the embedding and consequently increase retrieval accuracy of the embedding. Our method works with any differentiable loss function and does not introduce any additional parameters during test time. We evaluate our metric learning method on image retrieval tasks and show that it improves over state-of-the-art methods on the CUB 200-2011, Cars-196, Stanford Online Products, In-Shop Clothes Retrieval and VehicleID datasets.